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THE RODENT PARVOVIRUS H-1 AND ITS POTENTIAL IN COMBINATION 

WITH TIEN HSIEN LIQUID AS A TREATMENT FOR BREAST CANCER 
 

by Hayley Spires 

 

Southeastern University 2016 

 

 
 Breast cancer is responsible for 12% of cancer diagnoses each year, and it is the 

leading cause of cancer-related mortality in women worldwide. Current treatments have 

provided some success in combatting the disease but are not considered a final solution. 

The framework for how researchers approach cancer has continued to change, and this 

includes the introduction of oncolytic viruses as novel therapeutics for cancer. The 

rodent parvovirus H-1 has shown strong potential in clinical and subclinical trials, but its 

S phase dependency limits its usefulness against cancer stem cell populations. Tien 

Hsien Liquid is commerically available, nontoxic, and has shown selectiveness for 

cancer stem cells as well as additional oncosuppressive properties. Because of their 

unique characteristics, there is evidence that the rodent parvovirus H-1 and Tien Hsien 

Liquid have potential as a novel treatment in combination for breast cancer. 

 

Keywords: H-1PV, rodent parvovirus H-1, oncolytic viruses, Tien Hsien Liquid, breast 
cancer, cancer stem cells 
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INTRODUCTION 

 
 Imagine a room. Four walls, one door, and no windows. In the center of the 

room, there is a table with a giant box sitting on top. There is a lock sealing the box shut, 

and it is your job to find a way around the lock in order to open the container. You have 

no experience in picking locks and no tools to help you. Regardless, you get to work. 

Occasionally, someone will open the door and drop off a new tool to help you. Finally, 

the lock clicks and the box is opened. At last, you open the lid. Inside, you find fifty more 

boxes, all with new locks that are far more sophisticated than the original.  

 
 Our first instinct may be to give up. Why not? The box represents cancer. 

 
 Cancer has become a motif for healthcare fears in the past few decades. 

Worldwide, cancer caused 8.2 million deaths in 2012, and over 14 million new cases 

were diagnosed.1,2 Twelve percent of these new cases were breast cancer diagnosis in 

women.2 The problem is already astronomical, and it is only expected to grow worse due 

to an aging global population, a larger global population, and new/exacerbated 

environmental factors.3 In developed countries such as the United States, the incidence 

rate of cancer is twice as high as those in developing nations.4 By any given standard, 

cancer is a medical obstacle that has far reaching consequences. Breast cancer 

specifically makes up a large part of the issue, and it is addressed in more detail in the 

upcoming section. 

 The above scenario is not an argument that attempting to cure cancer is 

impossible or fruitless. The attempt is, however, perhaps the most complex medical 

problem of the twenty-first century. Cancer is unique from other diseases, because it is a 

very broad term. “Cancer” encompasses any type of mutation, misstep, or series of 

events that leads to uncontrolled cell growth.5 Two people can be diagnosed with the 
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same disease but have radically different mutations. Different mutations will make 

treatments more or less affective.6,7 A mutation refers to a change in a cell’s DNA.8 

Because DNA is responsible for providing the outline needed to make a cell’s proteins, 

these mutations have the ability to destroy or morph a protein product into something 

new.8,9 If a mutation affects the right gene, called tumor suppressor genes, it can cause 

the cell to lose its ability to control cell growth.9 

The human body is comprised of an amazing, complex series of control 

mechanisms intended to keep the whole organism healthy. Cancer is the result of these 

systems failing.9 Ironically, it is these precise, complex mechanisms that make treating 

cancer so difficult. Each step in these long pathways is an opportunity for failure, 

resulting in the emergence of transformed cell populations.6 The mistakes could happen 

anywhere at almost any time.  

While scientific research has grown in its ability to recognize the nuanced 

differences between types of cancers, this still leaves the research in a strange position. 

On one hand, understanding the specific mutations in an individual’s cancer gives 

researchers a better idea of how to combat the problem.10 At the same time, however, 

there are not enough resources available to try and combat cancer on an individual, 

case-by-case basis, and personalized medicine is still a long shot from being a perfected 

science.11,12 Only about five percent of insurance companies cover the cost of genetic 

testing, which makes patient interaction with these genomic technologies limited at 

best.13 Even if the monetary resources were available, the time constraints of 

researchers would still be a major roadblock to any approach involving personalized 

medicine. While new innovations and discoveries might change this, for now it remains 

an unlikely solution.13 

A better solution would be a cure for cancer. This is an obvious statement, but 

one worth exploring nonetheless. A cure would be something that has the ability to affect 
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breast cancer and melanoma and pancreatic carcinoma. Most likely, a cure would need 

to harness the human immune system.14 Today, science does not have the ability to 

design this kind of cure from scratch. No researcher can design and build 2,000 proteins 

in perfect sequence in order to create some kind of biological anti-cancer weapon. 

Alternatively, trying to “poison” cancer cells through chemotherapy and radiation therapy 

has been relatively effective (depending on the type of cancer) but not effective enough 

to be considered a long term solution.16 More importantly, there are major side effects to 

these current treatments.15 If poisoning tumors or designing a biological weapon 

targeting cancer are not options, perhaps it would be possible to discover a solution that 

already exists.  

Science has made great strides toward finding new solutions to the cancer 

disease. In the same way that penicillin was discovered and later revolutionized the 

treatment of bacterial infections, there is a possibility that the natural world already has 

its own set of tools for picking the locks of cancer. Recently, there has been a surge in 

investigating viruses as potential weapons against cancer. In the natural world, viruses 

exist that are known to selectively target cancer cells and kill them. These viruses are 

called oncolytic viruses. 

Oncolytic viruses are not a perfect solution, of course. Oftentimes, they interact 

with the host immune system in negative ways, are not selective enough in their 

targeting, or they are too selective.17 Regardless, these molecules do give researchers 

an adaptable starting point for creating a cure for cancer. The rodent parvovirus H-1 (H-

1PV) is one of the many emerging oncolytic viruses that shows strong potential in cancer 

therapy. When examining the most common issues that typical oncolytic viral therapies 

face, H-1PV seems to naturally defy these issues. H-1PV does not activate the human 

immune system by itself, but it does activate the host immune system toward tumors in 

addition to its natural oncoselectivity.18 More importantly, H-1PV was found to be 
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nontoxic in human patients, which serves as a drastic difference to the side effects from 

current cancer therapies.19  

Unfortunately, there is still one more locked box to address. With the recent 

discovery of cancer stem cells, scientists now know that not all cancer cells divide 

rapidly. Cancer stem cells are thought to be responsible for cancer metastasis 

(spreading from one location to another) and chemotherapy resistance.20 This drastically 

changes the approach to cancer treatment. Not only do treatments need to address the 

new issue, but the nature of the issue is very different from previous diseases. Cancer 

thrives because of its ability to disguise itself from the rest of the body. Quick 

proliferation was the scientists’ golden ticket to finding a way to target cancer without 

harming healthy tissue. When cancer stem cells defy this standard, they push a large 

part of cancer therapy research back to its starting point.  

In order to address this new obstacle, research has taken two approaches. First, 

it seeks to understand how cancer stem cells work and their characteristics.20,21 With this 

information, it would be possible to search for treatments that can directly target the 

cancer stem cell population. However, similar to the latter discussion regarding 

personalized medicine, this approach could very easily become a long, narrow road with 

no guarantee of finding a designable solution.22 Alternatively, there have been attempts 

to identify compounds that could selectively target these types of transformed cells.23 

This becomes increasingly important in the context of cancer stem cells. 

While cancer stem cell research is a relatively new branch of oncology, there 

have already been some promising results, including those seen with Tien Hsien Liquid 

(THL). THL itself has proven to have impressive anti-cancer properties, such as anti-

angiogenesis, anti-metastasis, and immunomodulation.23,24 It has also been suggested 

that the solution may directly target cancer stem cells.25 The difference between THL 

and other research aimed at targeting cancer stem cell populations is the research 
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supporting its use. While other therapies work at identifying specific biomarkers for 

cancer stem cells, followed by creating compounds to target these biomarkers, this 

method has several flaws.22 THL has already shown positive oncolytic potential and is 

known to be nontoxic in humans.25 In order to compare H-1PV and THL, there needs to 

be some common ground between the therapies. Among the many types of cancer, 

breast cancer is not only relevant in its incidence rate, but it also has the largest 

research crossover with both H-1PV and Tien Hsien Liquid. 

In a room of locked boxes, research has often aimed at trying to create perfect, 

individual keys for each type of cancer. Unfortunately, the fight to cure cancer is one of 

the most complicated endeavors that medical science has ever undertaken. The disease 

is incredibly complex, which lends itself to the need for a complex solution. There is 

potential, however, in the exploration of compounds and viruses that have shown 

naturally oncolytic properties. Perhaps, instead of trying to create a key, the focus should 

be on modifying those that already exist.  
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CHAPTER 1: BREAST CANCER 
Breast Cancer Today 

 

 As defined by the World Health Organization (WHO), cancer is caused by 

uncontrolled cell proliferation.26 In 2012, there were 14 million new cancer cases around 

the globe, and the rate of new cases is rising exponentially.4,26 Within the next two 

decades, the number of new annual cases is expected to grow to 22 million.27 

Economically speaking, the global cost of cancer, because of death, sickness, or 

disability in the population, is estimated at $895 billion dollars per year.28 While cancer 

may be caused by preventable dietary and lifestyle risk factors, these cases amount to 

less than one third of diagnoses.3,26 

Lifestyle and dietary factors include 

exercise, diet, and tobacco use. 

Because cancer is often 

caused by repeated exposure to 

both controllable and uncontrollable 

environmental factors, there is a 

direct correlation between age and 

cancer incidence.3,6 As the average 

life expectancy grows higher, the 

frequency of cancer incidence 

continues to rise, particularly in first 

world countries.4 According to the 

CDC, breast cancer is, by large, the 

most common cancer diagnosis 

among women.29 Every year, 230,815 

Figure I: Incidence rate of breast cancer 

(malignant and in situ) for separate age groups 

from 1975-2013.30 Notably, the chart looks at the 

rate of cancer incidence within the population, 

per 100,000 people. This scale does not account 

for population growth or an increase in lifespan. 
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women in the United States are diagnosed with some form of breast cancer.29 Despite 

its high incidence rate, breast cancer is not the deadliest cancer for American women. In 

terms of mortality, lung cancer causes more female deaths per year than breast 

cancer.6,26 However, on a worldwide scale, breast cancer is the second leading cause of 

cancer-related death in developing countries, beaten only by cervical cancer.29,30 

Altogether, this makes breast cancer the leading cancer-related cause of death 

for women globally.30,31 For these reasons, breast cancer is significant in its impact on 

American health and healthcare needs around the world. Figure I shows the relative 

increase of breast cancer incidence over the past forty years. Overall, the trend shows 

rates increasing slowly over time, with some fluctuation. This is most likely due to the 

removal or introduction of widespread environmental factors and behaviors.3,26 Figure II 

outlines the history of breast cancer treatment and how these treatments have affected 

the overall mortality rate of breast cancer in American women. 

Given these statistics, there is little doubt that breast cancer is a major health 

concern. In the present day, the need for more effective treatment methods is immense. 

As discussed, this need will continue to grow as the elderly population expands and the 

average human lifespan increases.4 Before looking into these current methods, however, 

it is first important to take a step back and examine the evolution of the disease 

epidemiology and its treatments throughout the years.  

 

Radiation and Chemotherapy 

 

 X-ray technology was discovered by Wilhelm Conrad Roentgen, and radiation 

was introduced as a treatment for cancer within the following five years.32 Soon after, 

unfortunately, it was discovered that radiation could cause cancer just as easily as it 

could treat the disease.33 Many early radiologists developed leukemia because of the 
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constant exposure to X-ray radiation.34 In fact, there remains a strong correlation 

between pregnant women who are exposed to radiation and the rates of cancer in their 

children.35 Children who are exposed to radiation have also shown to have much higher 

rates of cancer later in life.36 Despite these early risks, radiation is used in the United 

States today to treat 50% of new cancer cases.37 

Radiation works, from a medical perspective, by damaging DNA. Because 

cancer cells are hallmarked by their ability to proliferate quickly, damaged DNA will 

cause immediate harm to tumors.38 On one hand, this damage can cause the tumor cells 

to destroy themselves. If these apoptotic pathways are not resolved or have become too 

mutated to function properly, damaging the tumor DNA can still halt the replication 

process and prevent further tumor growth.39 Regardless, the radiation will damage DNA 

in any tissue that it comes across, including healthy tissue. While tumor cells may 

Figure II: This graph is a depiction of how breast cancer treatment methods have 
progressed over the last forty years. More specifically, it focuses on how these 

treatments correlate with the number of deaths per 100,000 people in the United 
States.35 While anesthetics did allow initial exploration of surgical methods for tumor 

removal, the introduction of targeted therapy and lymph node biopsies had the largest 
impact on the mortality rates of breast cancer. 
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appear have the most immediate and dramatic response to radiation exposure, normal 

cells are still at risk for destruction following DNA damage as a result of radiation.39 It is 

the targeting of these healthy cells, albeit unintentionally, that causes the side effects 

associated with radiation. 

 To minimize this problem, researchers have worked toward controlling the 

direction and intensity of radiation. Conformal radiation therapy (CRT) involves making 

three dimensional images of a patient’s tumor, creating a cast to hold the body still 

during the treatment, and shooting the radiation directly into the tumor at multiple 

angles.40,41 Another technique, called conformal proton beam radiation therapy, uses 

protons instead of x-rays in order to damage tumor DNA.41 One new option, 

intraoperative radiation therapy (IORT), involves administering radiation during surgery. 

In this method, nearby tissue can be shielded directly via an opening in the body cavity, 

and doctors can channel the radiation more directly toward the tumor.42 

 All of these types of radiation, while different, have several significant 

commonalities. First, their purpose is to damage tumor DNA in hopes that the damage 

will lead to cell death. Second, they run the risk of affecting nearby healthy tissue. Lastly, 

even when radiation directly targets a tumor, the tumor rarely shows complete 

regression. More often than not, radiation helps in tumor reduction but is not a complete 

solution. Most importantly, radiation does not target cells in the G0 phase of cell growth.39 

The relevance of this will be discussed later in relation to cancer stem cells. 

 Chemotherapy, following radiation and surgery, is a third common treatment for 

cancer.43 Chemotherapy is based on the administration of cytostatics. Similar to the 

theory behind radiation therapy, cytostatics are meant to specifically target rapidly 

proliferating cells and stop their division process.44 Because chemotherapy treatment is 

usually systemic and less directed than radiation therapy, it effects rapidly dividing cells 
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from any part of the body. Often, these include red blood cells, hair follicles, and the GI 

track.45 

 Furthermore, even in cases where chemotherapy and radiation are successful in 

treating cancer, the side effects are far-reaching. They include anemia, burns, nausea, 

vomiting, hair loss, heart damage, nerve damage, and infection, among others.43,44 Of 

course, the nuances of radiation therapy, chemotherapy, and their combinations 

(radiochemotherapy) easily contain enough material to require reviews within 

themselves. However, for the sake of brevity, there are several clear points in this 

chapter that have been addressed in order to give proper context to the following 

discussion. 

Despite the relative success of both chemotherapy and radiation, breast cancer 

mortality and disability are still major problems in the United States. While some of these 

cases may be preventable, the large majority of breast cancer diagnoses are 

environmental or genetic. Both types of current treatments focus specifically on cells that 

are rapidly dividing and, the majority of the time, have no other oncoselective properties. 

Because of this, the methods have side effects that draw further attention to the need for 

alternative therapies. Moreover, selection of actively dividing cells leaves cancer stem 

cells relatively untouched with these treatments. 
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CHAPTER 2: H-1PV 

History of viral therapies and their clinical applications 

 
 The idea to use viruses as a therapeutic treatment for cancer began with a series 

of observations in the early-mid 1900’s. Leukemia and lymphoma patients who 

contracted viral infections occasionally went into remission.17 This sparked well-

intentioned, but ultimately ill-fated clinical trials. More often than not, treating leukemia 

patients with active viruses, such as influenza, did not affect tumor growth because the 

host immune response destroyed the infection before it could have any oncolytic effect. 

In cases of immunodeficient patients, the effects of the virus itself generally resulted in 

more damage than benefit.46  

 Ironically, despite this long lineage of viral therapy for cancer, the study of viruses 

was in its infancy throughout the twentieth century. The concept of a virus did not appear 

in full until its description in 1898, when Martinus Beijerinck discovered a pathogen that 

could not be removed through a filtration process that was known to catch bacteria, 

called Chamberland candle filtration.17,47 The existence of viruses was ‘proven’ in 1917 

by a French scientist named Felix d’Herelle, but the first virus was not visualized until 

1939.17,48 From this point onward, understanding of viruses has continued to grow at an 

exponential rate. 

Although research in the field of virotherapy has fluctuated in the past century, it 

has seen a large resurgence in the last few decades.49 In part, this is due to a medical 

gap in safe and effective cancer treatments (as previously discussed in relation to breast 

cancer). Because traditional methods have not shown sufficient results in the fight 

against most cancers, oncology has branched into more creative methods for attacking 

the disease.50 In addition, this growth has been facilitated by advances in genetic 

engineering.51 Through genetic engineering, researchers have created viral strains that 
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are non-pathogenic but still retain oncolytic abilities.52 This discovery is the key 

difference between the failed viral therapies of the early 20th century and the way that 

these treatments are explored today. The viral DNA/RNA can now be modified to 

change the protein products of viruses.17 These changes have allowed for increased 

oncoselectivity and other attributes (such as replication competence and immune 

activation) aimed at perfecting the oncolytic properties of viruses.52 

In general, viral therapies do appear to have the potential to function as effective 

alternatives to current cancer therapies.17,52 A wide body of literature including 

subclinical and clinical trials supports the efficacy of viral therapies in vitro and in vivo. 

Notably, appearing in a review published in 2015, over 1,000 patients have been treated 

with oncolytic viruses in various stages of clinical trials.51 In general, these current 

clinical trials have reported few side effects and extremely high or nonexistent toxicity 

dosages.51  

Among the oncolytic viruses studied so far, the H-1 parvovirus (H-1PV) is particularly 

notable. It belongs to the family Parvoviridae, and the species name is Rodent 

parotoparvovirus 1 (RoPV1).17,51 

The oncolytic properties of H-1PV have been studied in a number of in vitro and 

in vivo models, including glioblastoma/glisarcoma, neuroblastoma, medulloblastoma, 

breast cancer, pancreatic carcinoma, and more.17,51-57 The first clinical trial for H-1PV 

(Phase I/IIa, named ParvOryx 01) began in 2011 as a treatment for glioblastoma.58 The 

details of these H-1PV studies are discussed in further detail below. First, however, it is 

of interest to examine the molecular makeup and mechanisms which make H-1PV 

unique in its ability to target and destroy cancer cells. 
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The Fundamentals of H-1PV (structure, life cycle, 

and oncoselectivity) 

 
The H-1PV genome is made up of single-

stranded DNA (ssDNA), and the viral DNA codes 

for four major proteins.59 NS1 and NS2 are non-

structural proteins responsible for the main viral 

activity within a cell.60 VP1 and VP2 (viral proteins) 

make up the capsid, or external structure, of the 

virus.59 Although other protein products have been 

identified (SAT and VP3) they exist in small quantities.17 SAT has been implicated in 

MHC I processing or ER stress-related apoptosis, and VP3 is created by a 25 amino 

acid cleavage of VP2. VP3 does not have any known function.17 Figure III shows a 

hypothesized three dimensional structure for H-1PV. 

H-1PV has two promoters in its DNA sequence, P4 and P38. P4 includes the 

NS1 and NS2 sequences, and P38 contains VP1 and VP2.60 Figure 3 is a diagram of 

these relationships. The NS1 protein is responsible for activating the P38 promoter, 

resulting in VP1 and VP2 synthesis.61 The green regions in Figure 3 represent the 

palindrome sequences on either end of the ssDNA. These sequences play an important 

role in H-1PV replication.  

NS1 is the most widely-studied H-1PV protein, and it is essentially responsible 

for viral cytotoxic activity and replication.62 NS1 is a phosphoprotein found predominantly 

in the nucleus, because its sequence contains a nuclear localization signal.63 The NS1 

protein is responsible for binding to the H-1PV promoters and initiating the process of 

viral replication.64,65 It has also been shown to create reactive oxygen species (ROS).17 

While direct host-DNA interaction with ROS can lead to cell death, ROS have also been 

Figure III: Hypothesized 
structure of H-1PV capsid 
using MVM parvovirus 
model72 



  Spires 19 
 

found to interact with, and cause malformation of, other host macromolecules, such as 

lipids and proteins.66-68  

NS1 expression causes the host cell to arrest before the G2 phase of the cell 

cycle, and eventually induces apoptosis.69 p21 and p27, two cyclin kinase inhibitors 

(CKI), are upregulated by NS1, which causes the cell cycle to stop before the G2 phase 

of mitosis. Specifically, these two CKIs have been shown in inhibit CDK2/Cyclin A/E.70 

This relationship is represented and described further in Figure IV. The lifecycle of H-

1PV is dependent on cellular factors only present in the S phase. Thus, by freezing the 

mitotic process in the S phase through cyclin complex inhibition, the virus essentially 

creates a cellular atmosphere perfect for viral replication.71 

Because of the H-1PV S phase dependency, H-1PV has powerful and natural 

oncoselective properties.72,73 Only actively mitotic cells will ever present the S phase 

Figure IV: This image is a depiction of the role that different cyclin/CDK complexes 
play in the cellular replication cycle. The NS1 protein activates p21 and p27. These 
two CKIs, in turn, inhibit the CDK2/CyclinE complex. The resulting mitosis-freeze 
leaves the cell stuck before it can reach the G2 phase. Because the viral life cycle 

depends on factors from the S phase, freezing the cell cycle at this point is ideal for 
maximum H-1PV proliferation.70  



  Spires 20 
 

factors needed to activate H-1PV, resulting in host-cell death.17 In comparison, other 

oncolytic viruses have the ability to push quiescent cells into the S phase, which allows 

them to then begin replicating.68 H-1PV, however, does not have this property. This 

means that, while H-1PV can infect quiescent cells, it will never propagate once inside 

these types of cells.71 Altogether, this attribute is a major contributor to H-1PV’s non-

toxic properties.68 While this natural phenomenon is important, oncoselectivity can still 

be increased through genetic engineering, which is discussed further in the subsequent 

section. 

In addition to activating CKIs, parts of the NS1 domain are known to function as a 

DNA helicase and ATPase.69.74 While all of these mechanisms are important in inducing 

apoptosis, H-1PV oncolytic success is not entirely dependent upon cell-mediated 

apoptosis pathways. Typically, the production of reactive oxygen species, cycle 

inhibition, helicase and ATPase functions, and macromolecule interruption only cause 

apoptosis if the cancer cell still has the ability to pursue apoptotic pathways.75 However, 

in addition to normal cell-mediated apoptosis mechanisms, research has suggested that 

Figure V: The above photos show two cells in an NS1 expression experiment. The 
cell on the left does not have NS1 protein expression, and the cell on the right does 
have NS1 activation. The cell on the right shows signs of apoptosis, which was found 
to correlate directly to NS1 expression.4 
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H-1PV may kill cells by means of necrosis.76 Figure V shows how NS1 upregulation 

causes apoptosis, compared to a control with a downregulation of NS1 expression. 

At first glance, the multitude of functions that NS1 performs may appear 

contradictory to our understanding of protein specificity and resulting functional 

limitations. However, post-translational modifications of NS1 result in protein products 

with minor structural differences yet major functional changes. For example, although 

NS1 has been classified as a phosphoprotein and is regulated by phosphorylation, it had 

been discovered that NS1 undergoes acetylation as well as phosphorylation.77,78 The 

acetylated form of NS1 performs its own novel functions, such as DNA binding and p48 

promoter activation.79 So far, two acetylation sites have been identified at positions K85 

and K257 on the NS1 protein.79 

Of course, NS1 also undergoes phosphorylation at a few different sites. The 

protein is phosphorylated by protein kinase C (PKC) produced by the host cell.73 

Phosphorylated NS1 plays a few different roles. It is responsible for ATPase, helicase, 

protein binding, and DNA binding abilities.73,80 The big-picture life cycle and cytotoxic 

properties of H-1PV are outlined in Figure VI. The key points include cellular 

transcription factors regulating initial H-1PV promoter activity, viral DNA amplification, 

and the multiple oncolytic pathways that are engaged during viral proliferation. 
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Figure VI: This image depicts the many processes involved in H-1PV replication and 
oncolytic life cycle. Marker 1 shows the conversion of the ssDNA of H-1PV into dsDNA 
(where RF = replication factor). Marker 2 shows the original host transcription factors 
(TF) activating the P4 promoter to incite the initial NS-protein transcription. Once NS1 

has been translated (markers 3-6), NS1 functions in a multitude of pathways, as 
previously discussed. These include viral transcription amplification and host-cell 
destruction through many apoptotic pathways, such as ROS creation, increased 

lysosome permeability, and cell cycle arrest through CKIs. H-1PV cell entry is not well 
understood and thus remains ambiguous in the figure.73  
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H-1PV and the Immune Response 

 
 While direct oncolytic properties of H-1PV have garnered the most research 

interest, recent studies have focused on a secondary method of tumor destruction 

caused by H-1PV infection: activation of the host immune system.81 When testing the 

ability of H-1PV to completely eradicate tumors in mouse models, it was found that 

immunocompetent mice had a radically higher success rate when compared to 

immunodeficient mice.82 This discovery presupposes the conclusion that H-1PV does 

not only work through direct oncoselectivity and resulting oncolytic activity. 

  Research has long looked for successful cancer immunotherapies, which adapt 

the host immune system in order to make it recognize tumors.81 In order for cancer 

immunotherapy to be successful, antigen presenting cells (APCs) must first present a 

tumor antigen to the appropriate T-cells.83,84 Simultaneously, these APCs (typically 

dendritic cells) must have the appropriate microenvironment in order for their 

presentation to be successful. However, tumor cells block the APCs from successful 

presentation, effectively causing tumor antigen immunity similar to self-antigen immunity 

found throughout the body.83-85 This is represented in Figure VII below. 

Viruses are known to be highly immunogenic, and immunogenic viruses elicit an 

immune response.86 This is because they have the ability to activate all three steps of 

the APC activation pathway.87 Broadly speaking, these steps are referred to as antigen 

presentation, co-stimulation, and inflammatory cytokine release.87,88 When cancer cells 

are infected with an oncolytic virus, the immune system not only recognizes the viral 

particles as foreign, but there is also a co-stimulation targeted toward infected cancer 

cells.16 This co-stimulation has the ability to reverse the suppressive effects of the tumor 

microenvironment.16 The resulting immune response is neither characteristic of a 
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typically oncolytic virus immune reaction or a tumor immune reaction. Instead, it has 

characteristics independent of both pathways.89 

 One study found that when tumor cells are infected with oncolytic viruses, levels 

of type I interferons are increased.83 Co-stimulatory molecules are found more 

abundantly surrounding APCs, and dendritic cells begin secreting a wide variety of 

stimulatory molecules, including multiple types of interleukins.83 The viruses cause an 

increase in factors associated with the Major Histocompatibility Complex I (MHC I), 

which is responsible for presenting foreign peptides to cytotoxic T-cells.83,89  

 By causing the re-activation of dendritic cells and other APCs despite the 

adverse tumor microenvironment, and by stimulating the MHC class I synthesis 

pathway, H-1PV and other oncolytic viruses have immunotherapeutic functions. Through 

teaching the host immune system to recognize and target the tumor cells, two medicinal 

benefits emerge. First, activating the host immune response improves the direct 

oncolytic effect of H-1PV on infected tumor cells.90 Simultaneously, because the human 

immune system works in circulation, immune activation will target tumor cells even if 

they have not been infected by H-1PV and are located in a distant part of the body.83,85  
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H-1PV research modifications, synergisms, and subclinical trials 

 
 The oncolytic effects of H-1PV have been tested in numerous cell lines derived 

from various cancers. These include, as previously mentioned, glioblastoma/glisarcoma, 

neuroblastoma, medulloblastoma, breast cancer, and pancreatic carcinoma.17,51-57 

Without room to discuss each of these trials in detail, several conclusions have been 

drawn from their generalized results. The only cell line that appeared resistant to the 

major oncolytic effects of H-1PV was colon cancer.91,92 A study found that, because the 

H-1 parvovirus cannot induce S phase in its host cell, colon cancer cells infected with H-

1PV remain largely unharmed because of colon-specific cellular regulators.91,92 Outside 

of this specific example, however, H-1PV infection has shown remarkable oncolytic 

abilities in cell line cultures. In vitro cell lines have shown anywhere from 20-100% cell 

death.17  

Figure VII: The tumor 
microenvironment 
blocks various 
inflammation regulators 
and stimulatory 
pathways. This causes 
the APC presentation 
to T-Cells to fail, 
resulting in T-cell 
tolerance to the 
presented antigen. 
When these pathways 
are re-stimulated, T-
cell activation can 
occur in response to 
tumor antigens.85 
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 In vivo studies have shown similar 

results. Glioblastoma, Burkitt’s lymphoma, 

gastric tumors, and pancreatic carcinoma 

are among the trials conducted with mouse 

models.51,53,57 In each of these 

experiments, the researchers observed a 

significant tumor regression. In some cases, 

inhibition of tumor formation was also 

observed.17 In vivo, H-1PV delivery has taken several routes. Intratumoral injection, 

intravenous injection, and intranasal injection have all been observed as capable routes 

of administration.93,94  

 So far, there have been two approved clinical trials using H-1PV. First, for the 

treatment of glioblastoma, there was a trial called ParvOryx01.58 The study was 

completed in May 2015, although the confirmed results have not been reported on 

ClinicalTrials.gov.97 Another trial by the same company, called ParvOryx02, aims at 

using H-1PV to target pancreatic carcinoma.98 In unofficial forums, it has been stated 

that the ParvOryx01 trial was highly successful. H-1PV showed no toxicity and led to 

tumor reduction. Several trial patients were given a follow-up dose of H-1PV as a part of 

compassionate use standards after their tumors reemerged following the trial.99  

Because H-1PV can enter any human cell (although it only replicates and lyses 

tumor cells), work has been done to increase the specificity of H-1PV. In one study, this 

included detargeting the H-1PV capsid to normal cells and inserting a cyclic RGD-4C 

peptide into the H-1PV capsid.72 The RGD-4C peptide is known to bind two integrins that 

are over-expressed on tumor cells.100 As a result, the specificity of H-1PV to cancer cells 

is greatly increased.72 If H-1PV is more oncoselective, then lower dosages of H-1PV will 

be needed to achieve similar levels of oncolytic activity. 

Figure 8: The molecular structure of 

estradiol105 
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 In addition to tests looking at in vivo and in vitro administration of H-1PV 

independent of any other drug, H-1PV has been found to work synergistically with 

several different compounds.101 Glioma cell lines exposed to ionizing radiation showed 

increased levels of S phase factors, which caused H-1PV cytotoxicity to increase 

dramatically.95 Valproic acid independently causes tumor regression, and it was recently 

found to work synergistically with H-1PV in vitro and in vivo.79 Traditional 

chemotheureptic agents have also been found to amplify the oncolytic effects of H-

1PV.96 

  

H-1PV Research Specific to Breast Cancer 

 
 While the general effects and potential of H-1PV are relevant, it is important to 

isolate how these trends translate to the study of breast cancer. In breast cancer 

specifically, Parvovirus H-1 has been shown to prevent tumor formation in nude mice by 

more than 80%.56 Notably, in this study the implanted tumors were derived from human 

cell lines, which increases the relevance of the results. The cytotoxic effect of H-1PV has 

been shown to be specific to transformed mammary tissue. In a comparative study, H-

1PV did not inhibit healthy mammary cells compared to their cancerous counterparts.102 

Another study found that the susceptibility of different types of mammary 

carcinomas to H-1PV infection correlated to the level of oestrogenic receptors present 

on the cells.103 Oestrogenic receptors are estrogen receptors. Cells with high levels of 

oestrogenic receptors were more susceptible to H-1PV lytic activity than cells without 

oestrogenic receptors. Interestingly enough, the infection rates between all of the cell 

lines were around average. The only difference the oestrogenic receptors made was the 

likelihood of cell lysis. Oestradiol, one of the main types of estrogen produced by the 

body, was found to activate the oestrogenic receptors, which in turn made the cell lines 
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more sensitive to H-1PV.103 The molecular structure of oestradiol is shown in Figure 

VIII.104  

Altogether, the effects of H-1PV on human breast cancer models in vivo and in 

vitro are similar to those seen in other types of cancers. H-1PV induces cytotoxic effects 

in human breast cancer tissues.105 Because of this, H-1PV does appear to be a valid 

avenue of exploration for future breast cancer treatment research. However, there is one 

major factor that must be addressed before any conclusive arguments are made 

regarding H-1PV treatment of breast cancer: cancer stem cells.  
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CHAPTER 3: CANCER STEM CELLS 

 
The Discovery of Cancer Stem Cells 

 
 For many years, there was a question of how cancer could reemerge after a 

patient had spent months or years in remission. Completely new mutations causing 

cancer seemed unlikely. One suggestion was that treatment methods may not 

completely eradicate the disease and leave a few cancer cells in the body.106 While this 

can be true, this line of thinking does not explain long periods of remission, particularly if 

cancer is characteristically defined as abnormal rapidly dividing cell populations.4 The 

answer to this question, it turns out, revolutionized the way researchers today view 

cancer. Tumors are not homogenous masses of cells. Instead, they are heterogeneous 

populations.107 This explains why old therapies have not been effective. These therapies, 

including radiation and chemotherapy, were made to target only a subgroup of the cells 

that make up tumors.108  

In the scientific community, there is not a universal acceptance of cancer stem 

cell theory. Some favor the idea of clonal evolution.109 Clonal evolution theory is similar 

to CSC theory in the sense that it hypothesizes that there is a hierarchical system in the 

creation and differentiation of cancer cell populations.108,110,110 While clonal evolution and 

CSC theory are different, they share the common principle of heterogeneity within 

tumors and explore the way that this affects treatment of cancer cell lines.109,111Because 

of this common ground, the argument between the two theories will remain untouched. 

Instead, the research will be explored, regardless of which theory it is believed to 

support. For the sake of clarity, the slowly proliferating tumor sub-populations will be 

referred to as cancer stem cells. 

The initial, revolutionary discovery of tumor heterogeneity was made by 

Dominique Bonnet and John E. Dick and published in 1997.112 The researchers found 
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subpopulations of tumor cells, which were later dubbed 

cancer stem cells (CSCs), that have different properties 

than previously characterized cancer cells.113 

Specifically, these properties include the ability to further 

differentiate, unique microenvironments, and a lifecycle 

that includes prolonged periods of the cellular lifecycle 

spent in the G0 phase.114 Notably, the microenvironment 

of CSCs is very similar to healthy human stem cells.115 

While slightly oxymoronic, the environment is both 

perivascular and hypoxic.114  

Because CSCs are not rapidly proliferating, any 

cancer treatment aimed at completely curing the disease 

cannot focus solely on rapid division as a means for 

targeting tumor cells.116 In fact, CSCs have been 

identified in most types of cancer.117 Moreover, most 

types of CSCs have been found to be resistant to both 

chemotherapy and radiation.108 Given the mechanism of both of these treatments, this is 

not particularly surprising considering the slow growth of CSCs. Outside of discovery, 

recent research has largely been aimed at trying to learn more about CSCs.117 While in 

many ways this has been a successful endeavor, it does leave science today at an 

impasse. On one hand, scientists now know that CSCs exist, yet at the same time there 

is now a need for current treatments to reconsider their approach for something inclusive 

of CSC targeting.116 

 

 

 

Figure IX: CD24+ sites 
were not able to initiate 

new tumor growth. CD24- 
tissues, on the other 

hand, showed massive in 
vivo proliferation and 

tumor formation. This lead 
to the identification of 

CD24- cells as CSCs.119 
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Limitations and Biomarkers of CSCs 

  
 Several biomarkers for breast cancer stem cells (BCSCs) have been 

identified/suggested. These include CD44+/CD24-/low, Her+, the Wnt pathway, the Notch 

receptor, and aldehyde dehydrogenase.118 All of these biomarkers are involved in very 

different pathways, but were able to selectively separate cancer cells that could recreate 

tumors versus those that could not initiate new tumor growth. The results for one of 

these studies (CD44+/CD24-/low) are shown in Figure IX.119 

The goal of CSC research, ultimately, is to find a way to target cancer stem cells 

and reduce cancer mortality rates.116,117 Before delving into the status and findings of the 

current literature, this end-goal is further outlined in Figure X. Due to the elusive nature 

of CSCs, researchers so far have been unable to identify the frequency of CSCs in 

vivo.113 In addition, their precise origin is still under debate.120 As such, research looking 

into CSCs remains largely speculative regarding how well animal models and cell lines 

are able to represent the nature of CSCs in vivo.113 

 Finally, one last issue makes researching BCSCs difficult. It has been proposed 

that CSCs have an ability called phenotypic switching.121 This means that, while an initial 

separation between tumor cells with a specific biomarker may accurately divide the two 

subpopulations of cancer cells, these cells have the ability to switch phenotypes.118 To 

rephrase, differentiated cancer cells have the ability to revert back to a CSC state, as 

shown in Figure XI. This process was suggested when cells separated between CSCs 

and normal proliferative tumor cells presented strange results. A small number of the 

separated cells in the non-CSC category were found expressing a previously-identified 
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Figure X: This diagram focuses on the way in which a cancer therapy targeting cancer 
stem cell populations has the potential to revolutionize the outcome of cancer 
diagnoses.108 Currently, traditional therapies only target rapidly proliferating cells. While 
these cells do make up the bulk of tumors, remaining CSCs can repopulate the tumor 
area once the treatment is over. This is believed to be one of the major factors causing 
cancer relapse.  Alternatively, if treatments target CSCs as well as the general tumor 
population, cancer could (theoretically) be completely cured. There are three potential 
avenues for targeting CSCs. These include targeting CSC resistance to current 
treatments, targeting their ability to act as stem cells in a self-renewal capacity, or 
targeting the microenvironment that allows them to thrive in standard conditions. 
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CSC biomarker on their 

surface.122 Phenotypic switching 

is not well understood, and it 

adds another level of complexity 

to how BCSCs fit into therapeutic 

strategies for breast cancer. In 

fact, it has been alternatively 

hypothesized that all CSC 

biomarkers can be expressed on 

a small subgroup of normal 

tumor cells.118 This ideology, if 

true, takes away some of the 

legitimacy of CSC biomarkers 

as a means for therapy 

discovery. 

 Altogether, CSCs are still a 

highly debated topic. While the idea behind CSC-directed therapy makes sense in 

theory, its actualization has been complicated by a limited pool of knowledge, issues 

with biomarker identification, phenotypic switching, and the final argument of whether 

CSCs are an accurate theory at all. 

  

Figure XI: The figure to the left is a depiction of 
phenotypic switching theory. Non-CSCs (in blue) 
testing positive for a CSC biomarker indicate a 

phenotypic switch between a normal tumorigenic 
cell and a cancer stem cell.5 
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CHAPTER 4: TIEN HSIEN LIQUID 
 
The Direct Tumor Targeting of THL 

 
 For the past twenty years, Tien Hsien Liquid (THL) has been used as a 

supplement for cancer patients. The formula is made up of extracts from fourteen 

different herbs. These herbs are Cordyceps sinensis, Oldenlandia diffusa, Indigo 

pulverata levis, Polyporus umbellatus, Radix astragali, Panax ginseng, Solanum nigrum 

L., Pogostemon cablin, Atractylodis macrocephalae rhizoma, Trichosanthes radix, 

Clematis radix, Margarite, Ligustrum lucidum Ait, and Glycyrrhiza radix.123 

While THL remains underexplored, the body of research supporting its use 

continues to grow, with several findings that are of particular interest. Altogether, Tien 

Hsien Liquid has been observed to produce immunomodulary effects and tumor 

metastisis inhibition.24,124 Most importantly, THL has been implicated in cancer stem cell 

inhibition.24 

  In a study examining the 

effects of THL on a promyelocytic 

leukemia cell line, researchers 

found that THL decreased levels of 

cyclin A and cyclin B1.123 This 

resulted in cell lines arresting at the 

G2/M phase and eventually going 

through apoptosis. Specifically, the 

researchers found that apoptosis 

was initiated by a THL-associated 

decrease in PML-RARα and 

DNMT1 proteins. In cancer cells, 

Figure XII: THL represses the DNMT1/PML-
RARα complex. When this complex is 
deactivated, apoptosis occurs.123 
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DNMT1 (DNA methyltransferase 1) is a chromatin modifier involved in DNA methylation. 

Hypermethylation caused by these modifiers has been shown to downregulate tumor 

suppressor genes.124 In turn, the downregulation of DNMT1 and its recruiter protein, 

PML-RARα, causes cell death via apoptosis once the hypermethylation pathway is shut 

down. This relationship is displayed as a diagram in Figure XII. The researchers in this 

study also identified a specific part of THL, named EAS5, that contained the part of THL 

responsible for the compound’s oncolytic activity. A follow-up study found that THL 

worked in a nearly identical regulatory way when breast cancer cell lines were tested 

instead of promyelocytic leukemia.124 

 Additional research has found similar results. One study on cell lines found that, 

while THL was able to induce apoptosis in fifteen cancer cell lines, it did not induce 

apoptosis in healthy human cells.125 Experiments have also uncovered that THL inhibits 

tumor migration and invasion, inhibited tumor growth, and prevented angiogenesis in 

various models.23 THL also inhibited the hypoxic microenvironment in breast cancer 

cells. This resulted in a reduction of factors known to cause tumor proliferation.23 

 

THL Activity in CSC Populations 

 
 Recent cancer research has looked to the DNMT1 pathway as a way of targeting 

and identifying cancer stem cells.126 It has been found that DNMT1 regulation is a key 

player in the transition from actively mitotic tumor cells to CSCs.127,128 In fact, methylation 

inhibitors are currently being studied as novel anticancer agents.128 Specifically, high 

rates of methylation are associated with cancer metastasis.127 One study found that 

DNMT1 reduction directly correlates with an increase in the cancer stem cell 

phenotype.128 These studies provide strong evidence that THL plays a legitimate role in 
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combating cancer through methylation pathways. It has also been identified through 

direct experimentation that THL has the ability to suppress cancer stem cell genesis.24,129 

 

Indirect Tumor Targeting of THL and Toxicity 

 
 Outside of the direct role that THL plays in targeting cancer cells, the solution has 

also been shown to affect the immune system.130 In patients with recurrent aphthous 

ulcerations, THL has been found to increase proliferation of peripheral blood 

mononuclear cells.23 In addition, THL has demonstrated immune system activity in 

cancer models. 

One study identified that THL possess immunomodulary capabilities in cell lines 

and animal models.130 Most notably, the researchers found that THL increased NK cells 

and their activity as well as CD4+ T-cell levels. Complementary to this, the mouse 

models were also found to have increased levels of several major immune system 

components: IFN-γ, IL-2, and TNF-α. While all of these molecules have a number of 

different functions, it is sufficient to say that increased levels of cytokines, including 

interleukins and necrosis factor, implicate a positive immune system arousal because of 

THL administration.  

 In terms of safety, THL has no reported side effects. THL was tested in one 

clinical trial, where it was found to be non-toxic, although mild constipation and itching 

were reported.26 While the trial was for patients diagnosed with refractory metastatic 

breast cancer and did show promising results, the small size of the trial prevents the 

data from being accepted as anything more than a positive indicator.24  

 Altogether, Tien Hsien Liquid has properties that make it novel for the purpose of 

cancer therapy. It displays direct anti-tumor activities in a multitude of pathways. In 

addition, it has been found to be nontoxic in vitro and in a human clinical trial. Most 
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importantly, however, is the ability of THL to directly target cancer stem cells. Given the 

complexity of CSCs, this property makes THL particularly striking.  
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DISCUSSION 

 
 One of the greatest difficulties in the fight against cancer is the vastness of what 

remains unknown.131 This puts cancer research in an interesting position. On one hand, 

until every form of the disease is accurately documented and explored on a subcellular 

level, therapies will always, in some way, be taking a shot in the dark. Historically, the 

attempt to cure cancer has focused on identifying specific aspects of cancer and then 

using those identifiers to target the disease. This has been a tricky balance to find.132 

Treatments like radiation therapy and chemotherapy are not specific enough, and this 

results in damage to healthy tissue.1,15,45,133 

The problem now relates back to the key metaphor. If every type of cancer is a 

box with a different lock, understanding every aspect of one lock will not solve the entire 

problem. Making a very specific key might be the best way to open one box, but it will 

also, in turn, guarantee that the key cannot open any other box because of its specificity. 

Today, a universal biomarker for all cancer cells has not been found.134 Given the 

heterogeneity of tumor cells, a solution will most likely require a multi-pronged approach, 

with different therapies targeting different subgroups of cells.135,136 In curative 

chemotherapy, for example, a minimum of 2-3 different types of compounds are used.135 

Because of the radical difference between CSCs and rapidly proliferating cancer cells, 

an approach with multiple fronts seems much more feasible than attempting to find 

common ground between the two groups of tumor cells that still remains unique from 

healthy cell populations.  

Looking at the scientific literature, H-1PV appears to fill the gap of targeting 

rapidly dividing cell populations. While other oncolytic viruses also have the ability to 

target tumor cells and cause apoptosis, the majority of these viruses include S phase 

inducing mechanisms. This means that other oncolytic viruses, such as the 
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adenoviruses, have the ability to inflict harm on normal human cells by forcing them to 

enter into the S phase and then beginning viral proliferation.68 H-1PV, alternatively, can 

only proliferate in cells that enter the S phase of their own volition.71 While other 

oncolytic viruses have been genetically modified to be cancer-specific in an attempt to 

solve this problem, this introduced specificity presents a new issue that is two-fold. First, 

the cost of production increases by making manufacturing more laborious. While 

production costs are typically low, the added research and development cost associated 

with making viruses that are cancer-specific translate into higher treatment cost.137,138 

Second, any introduced cancer specificity typically takes the form of proteins binding to 

specific extracellular biomarkers that have been determined to be unique to cancer 

cells.139 Once again, by genetically modifying a virus to increase specificity, the research 

creates a narrow window for therapeutic use, because the specific treatment runs the 

risk of losing the ability to recognize parts of the heterogeneous tumor population.139 

In this regard, H-1PV is unique in its ability to selectively target cancer cells and 

induce apoptosis. Moreover, unlike other oncolytic viruses, H-1PV is particularly special 

in its relationship with the immune system. Because H-1PV is native to rodents, it does 

not illicit a human immune response against itself.17 It does, however, activate an 

immune response directed toward cancer cell populations.90 

Furthermore, the first clinical trial involving H-1PV showed promising results on a 

clinical scale (Summary of results).58 Although the results have not been directly 

published, a subsequent article stated that patients remained healthy after receiving 

repeated doses of H-1PV (following the trial) in combination with bevacicumab.99 Despite 

the results being unpublished as of yet, Dr. Bernard Huber, the CEO of the company 

running the trial, publically declared the trial a success.140 More importantly, it was 

identified that H-1PV is nontoxic, which is how the drug met the compassionate use 

standards for re-administration.99 
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This collection of characteristics, in total, makes H-1PV remarkable. It does not 

have the specificity complication plaguing current avenues of cancer therapy, there is no 

immune response concern, and even if H-1PV is ineffective, it lacks the side effects 

characteristic to traditional treatment methods. Of course, H-1PV is not going to cure 

cancer on its own. In fact, it is well agreed upon in today’s literature that cancer 

therapies need some multi-pronged approaches in order to target the heterogeneous 

tumor population.135 Because H-1PV is dependent on S phase factors, it will never 

effectively destroy CSC populations. However, Tien Hsien Liquid does shown promise in 

this area. 

There is a tendency, with new advancements, to compare them or offer them in 

conjunction with standard treatments. In fact, H-1PV has been tested in combination with 

traditional chemotherapy treatments and was found to be very effective.96 However, 

beyond this, there is a gap in cross application between new innovations. At this point, 

most CSC-specific treatments are still in the process of development, although a few 

drugs have reached pre-clinical and clinical trials.141 At this point, the major roadblocks 

for current therapies aimed at targeting CSCs are a lack of drug specificity and 

effectiveness.141 As a result, H-1PV must either wait on these therapies to catch-up, or 

H-1PV can enter subclinical and clinical trials as a standalone treatment. 

In this respect, Tien Hsien Liquid plays a unique role. THL has shown strong 

promise in anti-tumor activity.126 Because THL has been used for centuries, has no 

known side effects, and is currently market-approved (albeit on a naturalistic scale), it is 

a unique candidate for combination therapy with H-1PV. It’s role in the DNMT1 pathway 

suggests that, not only does THL target cancer cells, it does have a specific mechanism 

for targeting CSCs.129 

For the sake of crossover, breast cancer is the best place to start when looking at 

these therapies in combination. Both H-1PV and THL have been studied extensively in 
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breast cancer models, and both have been shown to be effective independently.26,56 

With this type of background, it is possible to justify research that looks at the two 

treatments in combination. More importantly, the huge impact of breast cancer in terms 

of diagnoses, mortality, and cost, makes it a prime target for innovative therapies. As 

previously discussed, breast cancer is the second leading cause of cancer-related 

mortality in women worldwide.29 The economic cost is massive, and current treatments 

are largely ineffective.45 Even when treatments are effective, the side effects of 

chemotherapy and radiation are unacceptable. 

The advances with H-1PV give cause for some optimism, however. The virus has 

shown promising results, it translates well in human models, it has no major side effects, 

and its mechanisms have strong, naturally oncolytic properties. Although this is a definite 

step up from current treatments, H-1PV will never be a full cure for breast cancer by 

itself because of cancer stem cell populations in heterogeneous tumors. THL, given its 

current place in the market, is an optimal choice to begin exploration between H-1PV 

and cancer stem cell-targeting combination therapies. Combination therapy with drugs 

aimed at targeting CSCs will give H-1PV an opportunity to fully attack tumor populations, 

instead of only focusing on rapidly proliferating cells providing S phase factors. Because 

other CSC-targeting drugs tend to show low cancer specificity or specificity excludes 

part of the tumor cells, THL remains a strong contender for this combination therapy. 

Moreover, both of these drugs have negligible side effects. Altogether, their 

characteristics and the available research warrants further exploration of a combination 

approach between H-1PV and THL for the treatment of breast cancer. 

In a room of boxes, H-1PV and THL are likely candidates for creating a more 

universal key. While the relative newness of both of these therapies in the realm of 

cancer research has prevented them from being explored in combination thus far, it is 
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these types of multi-front approaches that have become increasingly necessary in the 

fight against cancer as more is discovered regarding heterogeneous tumors. 
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