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Abstract 

 Human African Trypanosomiasis (HAT) is one of 17 neglected tropical disease prioritized 

by the World Health Organization (WHO). Neglected tropical diseases are diseases which affect 

poor or developing countries and which do not get as much as attention as the ‘big three’: 

malaria, tuberculosis and HIV/AIDS. HAT specifically affects coutries in Sub-Saharan Africa and is 

caused by a parasitic protozoa, Trypanosoma brucei. There are two stages of HAT: the early 

haemolymphatic and late meningo-encephalitic stages. There are also two subtypes of the 

disease caused by either T. b. gambiense or T.b rhodesiense forms of the parasite. There are 

four drugs currently used to treat HAT, depending on the subtype of disease and whichever 

stage a patient is in. The nitroheterocyclic drug, Fexinidazole is currently in clinical trials for the 

treatment of both the early and late stages of HAT as well as the two subtypes. However, as 

with most antiparasitic drugs, potential parasitic resistance of the target parasite to 

Fexinidazole is an issue which must be taken into consideration and dealt with. Combination 

therapy is a method by which the likelihood of potential parasite resistance is reduced. The 

therapy uses two chemically unrelated drugs to treat a disease and is based on the theory that 

parasitic resistance to a combination therapy is less likely than resistance to a monotherapy. 

The combined drugs usually work additively or synergistically to treat the disease as well. 

Eflornithine (also known as α-difluoromethylorntihine or DFMO) is a drug currently used in 

combination with nifurtimox to treat the second stage of HAT caused by T.b gambiense. 

Nifurtimox and Fexinidazole are both nitroheterocyclic drugs and as a result, have similar modes 

of action. Therefore, I believe that eflornithine is the ideal partner drug to be used in conjunction 

with Fexinidazole since it has been shown to be effective in combination with a Fexinidazole-

related drug (nifurtimox) but is not chemically related to Fexinidazole. The use of this 

combination therapy will allow prolonged use of Fexinidazole in treating HAT and contribute 

towards the eventual elimination of the disease. 

 

Keywords: Human African Trypanosomiasis (HAT), sleeping sickness, haemolymphatic, 

meningoencephalitic, Trypanosoma brucei gambiense, Trypanosoma brucei rhodesiense, eflornithine, 

fexinidazole, combination therapy, monotherapy  
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Introduction 

Human African Trypanosomiasis (HAT) 

 Human African Trypanosomiasis (HAT) is a 

neglected tropical disease which is communicable 

and prevails in tropical climates. The disease, also 

known as sleeping sickness, is caused by the 

parasitic protist Trypanosoma brucei and is 

transmitted from host to host by the tsetse fly 

(Glossina sp.)(1). The reason for the disease’s 

restriction to tropical climates is due to its vector, 

the tsetse fly, being prevalent only in such 

climates. The fly is specifically restricted to areas 

between the latitudes of 14˚N and 20˚S. as these 

areas have temperatures between 16°C–38°C and relative humidity levels of 50%-80%; 

temperatures ideal for tsetse fly survival(2). As a result, HAT is endemic to thirty-six countries in 

sub-saharan African countries which fall within the above-mentioned latitudes (shown in fig. 

1)(3)4). These countries cover an area of 9 million km2 leaving an estimated 60 million out of 

the 400 million inhabitants of these areas at risk of contracting the disease(4,5).  

Neglected Tropical Diseases 

Figure 1.  Prevalence and incidence of HAT in sub-Saharan African 
countries as recorded by WHO in 2013 (3). 
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Most diseases, such as HAT, which affect the poor and vulnerable in underdeveloped or 

developing countries have been grouped together under the title, “Neglected Tropical 

Diseases” (NTDs)(6). NTDs are different from the three major diseases- HIV/AIDS, tuberculosis 

and malaria- which receive a great deal of attention and funding though these three also affect 

developing countries(6–8). However, this does not mean that NTDs are completely ignored by 

the world. As a matter of fact, one-half of the 2015 Nobel Prize in Medicine was awarded to 

scientists William C. Campbell and Satoshi Omura for their work in developing avermectin, a 

novel therapy against onchocerciasis and lymphatic filariasis which are both caused by 

roundworm parasites and are both NTDs(9–11). The other half of the prize was awarded to 

Youyou Tu for discovering a new therapy against malaria(10). The awarding of the prize to the 

above-mentioned diseases, especially onchocerciasis, marked a milestone in infectious diseases 

affecting poor countries. The World Health Organization (WHO) has prioritized seventeen of 

these diseases, including HAT, which are caused by four major types of pathogens: protozoa, 

helminths, viruses and fungi(12). The diseases are all communicable and their causative 

Figure 2. Countries affected by the NTDS. Some counties are affected by more than one NTD (8). 
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pathogens thrive in tropical and sub-tropical climates, hence why they do not prevail in other 

countries but only prevail in the countries they do (as seen in fig. 2).  

Together the seventeen NTDs affect more than a hundred countries and 1.4 billion 

people which is approximately one-sixth of the world’s population. In terms of mortality, the 

diseases cause the deaths of up to 500,000 people annually. The reason why the diseases thrive 

in poor areas is due to the fact that these areas suffer from inadequate access to clean water, 

poor nutrition, and poor hygiene amongst other less than optimal living conditions which are 

ideal for communicable diseases(13). In addition, the diseases leave those who are infected 

unable to work and earn a living due to cognitive and physical impairment. As a result, NTD 

infections result in a vicious cycle of poverty in infected communities where they are both its 

cause and effect(6). Although these diseases are termed “neglected,” commitment to 

controlling the various NTDs have increased internationally in recent years(7). In fact, in the 

year 2012, WHO formulated a “Roadmap” towards the control and the elimination of NTDs(7). 

For some diseases, the strategy for control was through preventive chemotherapy. For other 

diseases, such as Human African Trypanosomiasis (HAT), prophylactic treatment is not used; 

instead, the method of control is based on detection of the cases along with intensified disease 

management (IDM)(7). In this thesis, a literature review of the efforts that have been taken to 

control HAT so far will be provided. However, this cannot be done without some background 

information about the disease, something that will be discussed as well. In addition, a proposal 

will be made for the potential improvement of HAT treatment, especially if WHO’s plan target 

for the elimination of HAT by 2020 is to be achieved(7). 
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HAT History 

Sleeping sickness was first associated with the slave trade in early modern times as the 

earliest accounts of the disease at that time were written by slave trade companies’ ship 

doctors and medical officers(14). The first accurate medical report of HAT was published in 

1734 by an English naval surgeon named John Atkins. However, despite increasing reports of 

sleeping sickness in the nineteenth century, details about it were not known. It was not till the 

year 1852 that sleeping sickness was associated with the bite of a tsetse fly. This relationship 

was discovered by David Livingston, a Scottish missionary and explorer. Although it was now 

known how the disease was transmitted, the actual causative agent was still unknown. 

Trypanosomes were not identified as the parasites responsible for HAT until 40-50 years after 

the discovery of its vector was made. Scottish pathologist and microbiologist, David Bruce 

discovered the protist, Trypanosoma brucei as the agent of infection in cattle trypanosomiasis 

(also known as cattle nagana) in 1895. Definitive identification of the trypanosoma parasite as 

the cause of HAT occurred when the protist was observed in the blood of an infected human in 

by a British Colonial surgeon in 1901. The following year, the parasite was also observed in the 

cerebrospinal fluid of infected patients.  

 There have been three major epidemics of Human African Trypanosomiasis that have 

been recorded and they all happened in the twentieth century(14,15). The first one was a 

severe epidemic that caused the deaths of between 300,000-500,000 people. It began in 1896 

and did not end until 1906. It affected mainly Congo and Uganda, but also Kenya. This epidemic 

occurred during colonial times and it curbed the development of colonial territories(5). This 

first epidemic also began before any information had been gathered about sleeping sickness. 
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Therefore, all the discoveries concerning HAT which were described above happened as a result 

of the colonial administration’s attempts to prevent the disease from dismantling their colonies 

and leaving them without laborers(5,14). Once the disease had been clearly identified, along 

with its causative agent, control measures were established to stop the HAT epidemic.  

 The second major HAT epidemic began in 1920 and did not die down until the 1940s. 

The discovery of two drugs for treating HAT, suramin, which is still used today, and 

tryparsamide, an organo-arsenical drug, contributed greatly to the fight against the second 

epidemic. Other additional measures such as the introduction of mobile teams were 

undertaken to control the spread of the disease. With the mobile teams, systematic detection 

and treatment of infected people was initiated. Other measures which were also introduced 

and contributed to the control of the epidemic, including vector control and host reservoir 

control(14). 

The discovery of more drugs against HAT such as melarsoprol and pentamidine along 

with the combination of the systematic case screening and vector control eventually led to a 

dramatic decrease in HAT incidence once the 1960s began(14). In fact, HAT transmission in 

endemic areas was disrupted at this time so much that interest was lost in the disease(5). A loss 

of interest in the diseases resulted in discontinued surveillance and the risk of re-emergence of 

the disease was not taken into consideration(5). Discontinued surveillance was encouraged by 

HAT-endemic countries gaining their independence from the colonial powers in the 1960s. This 

led to both political and economic instability as the nations tried to determine how to stand on 

their own feet. The economic instability also negatively impacted the healthcare infrastructure 

in these countries so that HAT surveillance and control was no longer a priority(14).  
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The combination of reduced awareness of HAT, diminished HAT priority, and social 

instability and conflicts made it difficult for control interventions, resulting in a re-emergence of 

the disease in epidemic proportions(2). This constituted the third major HAT epidemic, lasting 

from the 1980s to the 1990s. The only countries which were affected were Angola, the 

Democratic Republic of the Congo, Southern Sudan, and the West Nile district of Uganda; but, 

only a fraction of these areas were under surveillance(2,14). An estimated 30,000 cases were 

reported annually during this time. However, due to the fact that civil wars and social upheaval 

prevented access to a large number of the affected populations, WHO estimated that the 

number of people affected was more likely 10 times more than the reported number of 

cases(5).  As a result, WHO improved its coordinating abilities and began to advocate and raise 

awareness of the disease so that both the public and private sectors contributed resources for 

HAT control and surveillance(2,5).  

Eventually, all the above-metioned efforts began to yield results; the number of HAT 

cases began to decrease steadily, falling below 10,000 since 2009. Figure 3 below shows the rise 

and fall in the incidence of cases, including during the period when HAT reached epidemic 

proportions. Although global incidence of HAT is low and seems to be declining, it is important 

to note that there are still areas in Sub-Saharan Africa where it remains a “hidden epidemic” 

under continuous surveillance(2,16). Therefore, the disease should not be written off as a 

public concern as this would be  premature(16). Additionally, history has shown that HAT 

incidence is characterized by epidemics that occur in episodes and resurgences, indicating the 

importance of maintaining HAT control methods(17). 
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Figure 1. Recorded number of HAT cases from 1940 to 2012 (10) 

 

HAT pathogen 

 Sleeping sickness, as mentioned before, is caused by Trypanosoma brucei, a unicellular, 

flagellated protozoan parasite (seen in fig. 

4). The flagella helps to move the parasite in 

whichever direction it elongates its 

body(16). With the flagella, the 

trypanosome is able to travel at speeds up 

to 20 um s-1, making it a highly motile 

cell(18)  There are two subspecies of T. 

brucei which infect humans, T.b gambiense 

and T.b rhodesiense(19). The gambiense form of the disease is known to be the causative agent 

of HAT in West and Central Africa while the rhodesiense form infects the eastern part of 

Figure 2. Scanning Electron Micrograph (SEM) of T.brucei (16) 
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Africa(20). The gambiense form is also more chronic, lasting up to three years and accounting 

for approximately 98% of observed HAT cases(20).  This subtype of HAT is anthroponotic, 

meaning it primarily affects humans but can also be transferred to animals(2,21). It is 

transferred from host to host by riverine tsetse flies, Glossina palpalis (22,23).  

Conversely, the rhodesiense form of HAT is a more acute and progressive type of the 

disease, lasting only months rather than years(2). This is the main difference between both 

forms of the disease. Another difference between the two is that the rhodensiense form, unlike 

the gambiense one, is a zoonotic disease(22). Its transmission cycle happens mainly between 

wild and domestic animals but can also intensify to human infection(2,20).  The tsetse flies 

responsible for transmission of this subtype of T.brucei are the Savannah flies (Glossina 

morsitans)  (22,23). The rhodesiense form of HAT accounts for the other 2% of observed HAT 

cases(2).  

There is a third subtype of T.brucei, T.b brucei. Unlike the other subtypes, this one does 

not infect humans but is only infectious to wild and domestic animals(14,24). This subtype is 

commonly used in the models for experiments dealing with HAT(2). T.b. brucei, like the other 

subtypes, is also transmitted by the tsetse fly. The three subtypes are morphologically 

indistinguishable from each other and also have similar life cycles(25).  

T. brucei life cycle in the tsetse fly 

 Despite the fact that HAT is highly life-threatening, the causative pathogen cannot infect 

a new host if it is not done through the bite of a tsetse fly (Glossina spp.)(16). However, the 

environment encountered by T. brucei during mammalian infection differs from the 
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environment in the tsetse fly vector(17).  Therefore, in order for the unicellular eukaryote to 

survive and proliferate, it must adapt by undergoing developmental changes throughout its life 

cycle in the different environments(25,26). These developmental transformations include 

changes in cell length and width, length of the flagella, and the relative position of the 

nucleus(16). As a result, the changes result in the formation of different T.brucei forms with 

morphological differences(26).  

Tsetse flies are blood-feeding insects 

which obtain energy and nutrients solely from 

the blood that they feed upon(27). As a result, 

they are referred to as hematophagous 

arthropods(28). The insects pick-up the T. brucei 

parasite when they feed on the blood of an 

infected host(29,30). A picture of the tsetse flying biting a mammal is shown in fig. 5. The life 

cycle of the parasite while is in the insect is known as the procyclic stage(31). The tsetse fly 

ingests T.brucei (into its midgut) from the bloodstream of the infected mammal while it is in its 

trypomastigote form. Two types of the bloodstream form (BSF) trypomastigotes are ingested by 

the fly during blood-feeding: the short stumpy (ST) form which cannot divide and the long 

slender (LS) form(16,32,33). Therefore, once in the insect’s midgut, ST trypomastigotes 

transform into procyclic trypomastigotes which are able to proliferate in the tsete fly’s midgut, 

thereby, allowing for infection of the fly(34). LS trypomastigotes, however, are unable to 

transform and therefore, die out(16). It is thought that the ST forms are pre-adapted to the 

environment in the midgut which is why they are able to differentiate, unlike the LS 

Figure 5. A tsetse fly feeding on blood by puncturing the 
skin of a human (23). 
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forms(32,35). Figure 6 shows scanning electon micrographs 

of the BSF versus the procyclic form of T. brucei(17).  

The procyclic form of the trypanosome is only 

infective of the tsetse fly and cannot infect mammals but 

must first develop through a series of transformations 

(which will be discussed shortly) before it can do 

so(18,36,37). Once differentiation into the procyclic form of 

the trypanosome has occurred, multiplication of the cell 

begins(20).  Infection of the fly’s midgut is not always 

successful as immunity-related factors subject proliferation to a 

series of bottlenecks(16). Infection is deemed successful if trypanosomes are found in the 

ectoperitrophic space (part of the midgut) three days post-infection as differentiation and 

proliferation lasts two to three days(16).  After the infection of the tsetse fly has been 

established, the parasites then travel towards the anterior end of its alimentary canal (or 

midgut) to the proventriculus (PV). This journey is accompanied by elongation of the procyclic 

trypomastigotes into mesocyclic trypomastigotes(16,20). The mesocyclic trypomastigotes have 

longer flagella which help to enhance migration of the cells(16). Once the mesocyclic cells arrive 

at the proventriculus, they proceed to transform into the thinner and longer epimastigote 

forms of the T.brucei cell(20).  Asymmetrical division of the epimastigotes occurs after the 

transformation which results in long and short epimastigotes. The long epimastigotes have 

more motility than their short counterparts and so serve as transport vehicles for them as they 

travel towards the salivary gland of the fly(16,20). Movement from the proventriculus to the 

Figure 6.  SEM of bloodstream form 
(BSF) and procyclic form (PCF) of the 
African trypanosome (17). 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3992894_pim0035-0283-f1.jpg
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salivary gland is done via the fly’s foregut and proboscis, meaning only a small number of 

parasites are able to complete the journey(20). Therefore, the migration process serves as 

another bottleneck for T.brucei parasites in the tsetse fly(16). The cells that are able to 

circumvent this bottleneck then attach to the epithelium of the salivary glands via their 

flagella(16). After attachment, the epimastigotes, like the procyclic trypomastigotes, begin to 

proliferate.  

Colonization of the tsetse fly’s salivary glands is achieved through normal cell division of 

the trypanosome. This is eventually followed by another round of asymmetrical division which 

results in the formation of a daughter cell that matures into a metacyclic form of the parasitic 

eukaryote. This metacyclic form is non-dividing and primed to adapt to or survive the 

environment in the mammalian host(34). Therefore, it is an infective form which can then be 

injected by the tsetse fly into a new host during feeding, thereby infecting it(16,30). However, 

maturation of the metacyclic trypomastigote is not complete until the cell acquired its variant 

surface glycoprotein (VSG) coat(18). It is the VSG-coated metacyclic trypanosomes that are 

ultimately released through the tsetse fly’s saliva(18).  Genetic exchange, the mating of T.brucei 

cells, is said to happen in the salivary glands of the fly(24,38). The entire process, from ingestion 

of the BSF trypomastigotes to maturation of the metacyclic trypomastigotes takes about twenty 

to thirty days in the tsetse fly(36). This ability of the tsetse fly to acquire the trypanosomal 

parasite, allow it to mature and finally transmit to a new mammalian host is described as vector 

competence(37). A summary of the life cycle of the trypanosome in the tsetse fly is shown in 

figure 7 below(16).  
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Figure 3. Life cycle of T.brucei in the tsetse fly. (I)The fly ingests the long slender (LS) and short stumpy (ST) trypomastigote forms 
which are then present in its midgut. The ST forms differentiate into the procyclic trypomastigote forms which are proliferative 

in nature (II). After infection is established, the PC trypomastigotes migrate toward the anterior portion of the midgut, 
elongating into mesocyclic trypomastigotes (MS), which are found in the foregut (FG), in the process (III). Once the MS forms 

arrive at the proventriculus (PV), they differentiate into epimastigotes which then divide (DE) asymmetrically into long and short 
epimastigotes (IV). Long and short epimastigotes travel to the salivary glands and a fraction are able to attach themselves to the 

epithelium (AE). The epimastigotes then undergo normal cell division (Epi-Epi) in order to establish infection in the SG or 
asymmetrical division (Epi-Trypo) to produce infective metacyclic trypomastigotes (MT) (VI (16)).  

 

Life cycle of T. brucei in mammalian hosts 

 In mammalian hosts, infection is initiated when an infected tsetse fly deposits 

metacyclic trypomastigotes in the connective tissue of the host’s dermal layer(28). Once it is 

deposited, the parasite proliferates at the site of inoculation before migrating to the lymph and 

blood circulation circuits(3). This is known as the early haemolymphatic stage of infection(18). 

Although it may cross through the walls of the lymphatic and blood capillaries into connective 

tissue, the parasite always remains extracellular(28). Eventually, the protozoan cells cross into 

the central nervous system (CNS) and cerebrospinal fluid by crossing the blood-brain barrier 

(BBB) or blood-CSF barrier(28). This is referred to as the late, meningo-encephalitic stage of 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3826061_fcimb-03-00071-g0003.jpg
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T.brucei infection(18). HAT is always fatal if left untreated due to this ability of the parasite to 

invade the CNS(18). The migration of the parasitic cells into the CNS provides a privileged 

environment which is not easily accessible by chemotherapy. Therefore, the CNS can serve as a 

reservoir, allowing T.brucei cells to re-infect the host(18).  

Unlike its life cycle in the tsetse fly, during which the trypanosome is characterized by 

different forms, the lifecycle of the protozoan in its mammalian host consists mainly of two 

forms: long slender (LS) and short stumpy (ST) form of trypomastigotes(28). The two 

trypomastigote forms are easily distinguishable from each other under the microscope(26).The 

LS form is the dividing form while the ST form is irreversibly arrested in the cell cycle making it 

non-proliferative(25,39). The ST trypomastigote, however, is adapted for transmission into the 

tsetse fly as mentioned before(33,40). T.brucei also has transitional forms between the LS and 

ST trypomastigote forms. These forms are referred to as intermediate forms(32).  

Transformation of the parasitic eukaryote from LS into ST forms occurs when parasite 

numbers increase in the host(41). The reason for this transformation is to maintain proliferation 

at sub-lethal levels in the host. In this way, the parasites avoid killing the host, as this would 

result in their death as well(39). Therefore, a balance always exists between the host and the 

parasite. T.brucei levels must be obtained at levels high enough for chronic infection to occur 

but must not be high enough to overwhelm the host before transmission occurs as this would 

lead to its extinction(39). The LS trypomastigotes have a density-sensing mechanism which 

allows them to detect when parasitic levels are getting lethal. This causes the arrest of some LS 

forms in a certain stage of the cell cycle (the G0/G1 stage), forming ST trypomastigotes which 

have a lifespan of abo two to three days after the cell cycle arrest(39). In this way, host survival 



T o m a  | 14 

 

is prolonged and transmission is also ready to be carried out(32). As a result, parasitemia in the 

host is marked by cyclical waves of rising and decreasing levels of infection (36) (shown in fig. 

8).  

 

Figure 4. Once a mammalian host is infected, long slender trypomastigotes begin to proliferate leading to rising parasitemic 
levels. Through density-sensing mechanisms, the LS form is able to perceive when parasitemic levels are getting too high i.e 

becoming lethal to the host mammal. Once this happens LS forms exit the cell cycle at the G0/G1 stage, forming short stumpy 
(ST) trypomastigotes. ST forms have a short lifespan and are non-proliferative in nature. Therefore, transformation into ST forms 
promotes host survival and decreased parasitemic levels. It is also at this point, that transmission of the parasite into the tsetse 

fly occurs. Once parasitemic levels decrease in the host, LS forms which did not exit the cell cycle begin proliferating again, 
starting the parasitemic wave over again (42). 

 

The VSG coat and antigenic variation 

As previously mentioned, T.brucei remains extracellular throughout its infection of a 

mammalian host. As a result, the parasite is left constantly exposed and vulnerable to the 

immune system of the host(42). Despite this, it is still able to establish prolonged infection in 

the host, resulting in a variety of pathological manifestations(43). The trypanosome is able to 
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do so because its surface is completely covered by a homogenous protein coat known as the 

variant surface glycoprotein coat (VSG)(30). This coat is comprised of approximately 107 densely 

packed molecules of a single VSG type and is responsible for determining the phenotype of the 

parasite’s antigens(44).  

The dense VSG coat shields the non-changing antigens on the surface of the protozoan 

parasite, preventing them from being detected or accessed by the adaptive immunity of the 

host(42,43). The VSG coat is also responsible for preventing T.brucei from activating the 

alternative complement pathway in the host(30). Despite this, the host’s immune system is still 

able to produce antibodies against the VSG, eventually resulting in lysis of the parasitic cells. In 

order to circumvent this and continue to survive, T. brucei periodically switches to an 

immunologically different VSG(42). This ability of the trypanosome to change the identity of the 

VSG type comprising its glycoprotein coat is referred to as antigenic variation(42). The 

trypanosome has up to 2000 genes responsible for the expression of the VSG types. In addition, 

genetic recombination of these genes also account for distinct VSG types. The parasite 

possesses mechanisms which ensure that only one VSG gene is transcribed at a time(28). As a 

result, the trypanosome has an almost inexhaustible repertoire of antigens that can be 

expressed on its coat(44,45).  Experimentally, a single trypanosome was observed to express at 

least 100 distinct VSG coats. However, this is an underestimation due to limited ability to detect 

the varying VSG types(30). 

 Antigenic variation is one of the most remarkable mechanisms of adaptation that the 

African trypanosome exhibits(28). It is also the most important contributing factor to the 

parasite’s ability to evade the host’s immune system and establish chronic infection(28,44).  
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During trypanosomal infection, a few parasites switch their VSG type at random(39,45). 

Therefore, when the immune system recognizes and clears parasites exhibiting the previous 

VSG variant, the parasites with the new variant survive. It is usually the short stumpy (ST) 

trypomastigote forms that are the survivors as they are more resistant to antibody-dependent 

complement-mediated cell clearance than their long slender counterparts(46). These survivors 

eventually give rise to a peak in parasitemic levels which is again decimated when antibodies 

are produced against those variants(42). As a result, infection of the host is characterized by 

cyclical waves of parasitemia (seen in fig. 9)(36,42,45). This eventually results in exhaustion of 

the host’s immune system(28). The ability of the trypanosome to undergo antigenic variation 

has been a major obstacle in vaccine development against HAT and has made prophylactic 

treatment an unlikely option in HAT control(47,48). This is evidenced by the fact that no vaccine 

trial with promising results has led to positive field trials(49). 

 

 

Figure 5. Parasitemic levels observed in a T. brucei- infected cow showing cyclical waves of parasitemia(43)  

 

The VSG coat is only found on the bloodstream form (BSF)  long slender and short 

stumpy trypomastigotes. When the BSF trypomastigotes differentiate into the procyclic 

trypomastigote in the midgut of the tsetse fly, they shed the dense VSG coat and replace it with 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=2486309_pbio.0060185.g001.jpg
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a procyclin coat(25,41). As a result, if the parasite were ever to transform into its procyclic form 

within the mammalian host, it would be rapidly cleared by the immune system as it does not 

have sufficient protection. Considering this information, induction of premature transformation 

of T.brucei into its procyclic form while in the mammalian host could serve as a potential 

chemotherapeutic approach for treating HAT(25).  

Clinical presentation: signs, symptoms and diagnosis 

 It was mentioned previously that during HAT infection, the T.brucei parasite progresses 

through two stages of infection. The first and early stage is referred to as the haemolymphatic 

stage. It is the stage of infection during which the parasite is restricted to and proliferates in the 

blood and lymph of the host(50). Eventually, the parasite invades the CNS by crossing the 

blood-brain barrier (BBB) or blood-csf barrier (BCB)(51). This constitutes the second or late 

stage of HAT infection, also referred to as the meningo-encephalitic stage(52,53). Infection 

always progresses from the first stage to the second stage if left untreated as the stages are 

sequential in nature(52).  

The progression of HAT from the early to the late stages is characteristic of infection by 

either of the two T.brucei subtypes, T.b. rhodesiense and T.b. gambiense(3).  However, as 

discussed previously, rhodesiense infection is the more acute form of HAT, lasting only 

months(54). On the other hand, HAT caused by the gambiense form presents with a more 

chronic form, lasting years(1,3).  As a result, invasion of the CNS, progression to the second 

stage of infection, occurs after about 3 weeks in rhodesiense HAT infection and after about a 
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year in gambiense HAT(55,56). This constitutes the main difference between the two HAT 

infection subtypes.  

 HAT infection by the rhodesiense subtype of the trypanosome is marked by a chancre in 

5-26% of infected patients(1,50). The chancre 

develops as a result of an inflammatory response to 

the inoculation of T.b rhodesiense parasites into the 

patient through the bite of the tsetse fly. The chancre 

marks the area where the patient was bitten by the 

fly and is the first sign of disease in these cases(1,50). 

The chancre is characterized by local redness, 

swelling, heat, and tenderness (as seen in fig. 10) at 

the site of the bite(1).  The chancre is rarely seen in patients infected with the gambiense form 

of HAT.  

 Due to the differences in infected areas between the two stages of sleeping sickness, 

they present differently in clinical situations. The early stage of HAT presents with non-specific 

symptoms such as intermittent fever, headaches, severe itching of the skin, skin lesions, 

weakness, anemia, lymphadenopathies, endocrine disturbances, muscoskeletal pains, cardiac 

disorders, hepatosplenomegaly, and edema of the face and the extremities(1–3). Once the 

disease progresses to the second stage, it presents clinically with features that can be 

categorized into psychiatric, motor and sensor abnormalities, and sleep disturbances(57). While 

these signs and symptoms are more specific than those of early HAT stage infection, they are 

still not individually diagnostic of HAT, as some of them characterize other CNS diseases as 

Figure 6. Chancre on the leg of a patient bitten by a 
tsetse fly and subsequently diagnosed with HAT 
infection by T.b brucei (55). 
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well(57). If left untreated, HAT is fatal to the infected patient as it progresses to systemic organ 

failure, cerebral edema, coma, and death(3,57).  

 Diagnosis of HAT is achieved using a combination of clinical and investigative data(57). If 

the set of symptoms described above present clinically in the context of a geographical location 

endemic to HAT, this would serve as an important clue for diagnosis(57). However, even in 

these endemic areas, rhodesiense HAT, for example, which is characterized by fevers of 103-

105°F(54), is often misdiagnosed as other febrile 

endemic diseases with similar clinical signs(58). 

Examples of these diseases include malaria, 

enteric fever, meningitis, tuberculosis, and 

HIV/AIDS(58). Therefore, the non-specificity of the 

disease’s signs and symptoms requires that 

diagnosis be confirmed by lab tests and 

results(52,58). A confirming lab result would be 

the detection of trypanosomes in the patient’s 

blood (seen in figure 11) or other tissues such as the lymph node during the early stage of the 

disease(57).  

Parasites are relatively easy to detect in rhodesiense HAT due to the presence of 

numerous bloodstream trypanosomes in this subtype of the infection(57,58). However, this is 

not the case in infections caused by T.b gambiense as fluctuating parasitemic levels, since cyclic 

parasitemia (as a result of antigenic variation discussed previously) is a characteristic of this 

infection subtype(57,58). Therefore, parasitological confirmation is more difficult with 

Figure 7. Colored scanning electron micrograph of 
T.brucei cells amongst human red blood cells (58) 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=338269_JCI0421052.f3.jpg
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gambiense HAT. This is where serological tests such as the one currently being used, card 

agglutination test for trypanosomiasis (CATT), come in. CATT is a simple and rapid direct 

agglutination assay used to detect the presence of antibodies specific to  T.b. gambiense  in the 

blood, plasma or serum of patients(59). The assay has a sensitivity rate of 87-98% and a 

specificity rate of 93-95% making it very reliable(21). CATT is used for screening purposes in the 

field, followed by parasitological confirmation(59). In other words, once a patient yields a 

positive CATT result, a microscopic search is then done for trypanosomes in the lymph nodes 

and blood(52). 

An important part of HAT diagnosis is determining which stage of infection a HAT 

patient is in as therapeutic decisions are based on this information. The haemolymphatic stage 

must be reliably distinguished from the meningo-encephalitic stage as failure to treat a patient 

with T.brucei CNS infection results in fatality. Conversesly, inappropriate treatment of an early 

stage patient for CNS infection involves high risk of unnecessary drug toxicity(57). Reliable 

staging of HAT is done by performing a lumbar puncture on the patient in order to examine the 

CSF(52,55). The criteria for CNS involvement in HAT infection is defined by WHO as the 

detection of trypanosomes in the CSF or a white blood cell count (WBC) of  >5cells/μl, or both 

(3,52,57). 

Current treatments 

 The BBB is highly selective – it prevents 98% of all known compounds from entering into 

the CNS including drugs used in treating HAT(60).  As a result, drugs used in the treatment of 

late stage sleeping sickness are toxic in their own right and differ from those used in treating 
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the early stages(3,60). The chemotherapeutic agent used in treating HAT also depends on which 

subtype of the parasite is the causative agent of infection as different drugs are used to treat 

the different HAT subtypes(3).  

 First stage sleeping sickness is treated with suramin in rhodesiense infection and 

pentamidine in the gambiense subtype(61). Suramin is a trypanocidal drug which is a derivative 

of a naphthalene urea compound 

(seen in fig. 12)(62). The drug is 

administered intravenously over the 

course of thirty days with a complex 

dose regimen(1,50). It is associated 

with complications such as renal 

failure, skin lesions, nephrotoxicity bone marrow toxicity, and peripheral neuropathy(1,50). 

However, these side effects are usually mild and reversible(1). Anaphylactic shock is another 

side effect of suramin treatment when acute hypersensitivity reactions occur. As a result, a low 

test dose is usually applied to the patient before the beginning of treatment(1). 

 Pentamidine, an aromatic diamidine (seen in fig. 13), has been in use for the treatment 

of HAT infection since the 

1930s(15). The drug was originally 

used with the intention of starving 

bloodstream trypanosomes of 

glucose; however, it was later 

discovered that it was trypanocidal in its own right(15). It is administered once daily over the 

Figure 8. Chemical structure of suramin, a naphthalene urea derivative. It 
was previously called Bayer 205 and Germanin before being renamed 
suramin (63) 

Figure 9. Chemical structure of pentamidine, an aromatic diamidine used in 
treating HAT stage 1 (63) 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=2848007_1756-3305-3-15-1.jpg
http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=2848007_1756-3305-3-15-4.jpg
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course of seven days though intramuscular means(3,15). The side effects of pentamidine 

treatment include nausea and vomiting, hypoglycemia, and pain at the site of injection(1,3). 

Despite this, the drug is generally well-tolerated(3). Treatment has proven to be effective and 

able to prevent the progression of disease(57). 

The treatments used in combatting second stage HAT are melarsoprol, eflornithine, and 

a combination therapy of eflornithine and nifurtimox (NECT)(3). Melarsoprol is a trivalent 

organic arsenical compound (seen in fig. 14) that was first discovered to treat second stage HAT 

in 1949(61). Its mechanism of action is not 

known(52). However, the drug was found to 

be effective in treating both the gambiense 

and rhodesiense forms of sleeping sickness 

and was the only available drug for treating 

both for fifty years after it was first 

discovered(1). Its administration involves 

three to four doses daily over the course of three to four weeks followed by clinical evaluation 

every six months during the next two years for follow-up purposes(57). This treatment course 

has been shortened to daily injections of the drug for ten consecutive days(1,61). However, 

melarsoprol as an arsenic-based drug is toxic and is known to cause reactive encephalopathy in 

about 10% of treated patients(50). Reactive encephalopathy is characterized by coma and 

repeated convulsions which result in the death of 50% of these patients(52). Due to the toxicity 

and side effects of melarsoprol, a search was undertaken to find an alternative treatment for 

late stage HAT infection. Melarsoprol has a high efficacy rate in HAT patients but has been 

Figure 10. Chemical structure of melarsoprol- an arsenic-based 
drug usind in treating late stage HAT (63) 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=2848007_1756-3305-3-15-3.jpg
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observed to have a failure rate of about 30%(57). This treatment failure is possibly caused by 

drug resistance in trypanosome cells(15). 

Eventually, in the mid-1980s, eflornithine (α-difluoromethylorntihine or DFMO seen in 

fig. 15) was found as an alternative 

treatment and safer treatment for late stage 

sleeping sickness(52) In 2000, twenty years 

after its efficacy was first established, it was 

made available for clinical use(1). The drug 

functions by affecting the synthesis of 

polyamines - important organic compounds required for growth and multiplication by all 

eukaryotic cells - in trypanosomal cells(52). Specifically, eflonithine irreversibly inihibits 

trypanosomal ornithine decarboxylase (ODC), an enzyme involved in the metabolic pathway. 

 Eflornithine chemotherapy involves the administration of fifty-six intravenous injections 

of the drug over the course of fourteen days: 100mg/kg two hour infusions four times 

daily(52,63). Once it was made available for clinical use, eflornithine was made the first-line 

treatment for treatment of gambiense HAT(1,52). However, its use is constrained by the fact 

that its administration is long and burdensome and not ideal for HAT-infected areas where 

material and human resources are already limited(1,63). To mitigate some of these difficulties, 

WHO provided kits with the necessary supporting materials for treatment and coordinated 

training of personnel from national sleeping sickness control programs(1,52). The WHO made 

these efforts in 2006. Following this, eflornithine use as first-line treatment for gambiense 

sleeping sickness began to increase(52).  

Figure 11. Chemical structure of eflornithine (63) 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=2848007_1756-3305-3-15-5.jpg
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NIfurtimox is a nitrofuran derivative 

organic compound (seen in fig.16). The drug is 

used to treat Chagas disease caused by 

Trypanosoma cruzi but was found to work as a 

partner drug with eflornithine in a combination 

therapy(52,62). Nifurtimox and eflornithine 

combination therapy (NECT) was implemented 

in the treatment of sleeping sickness in an effort to shorten and simplify eflornithine 

monotherapy(1). The combination therapy was discovered to be less cumbersome and difficult 

to administer, requiring only fourteen intravenous injections of eflornithine over seven days 

rather than the fifty-six injections of eflornithine monotherapy over fourteen 

days(52,63).Therefore, NECT not only involves a fourfold decrease in the number of IV 

(intravenous) infusions of eflornithine needed but also a decrease in the duration of treatment. 

Nifurtimox is taken orally three times per day for the duration of ten days(63).  

NECT also involves a decrease in cost of treatment and an increase in the efficacy of 

eflornithine(3,63). Therefore, NECT has been recommended by WHO as the first-line treatment 

for late stage HAT infection by T.b gambiense. In 2009, it was added to WHO’s List of Essential 

Medicines(1,61). The addition of the combination therapy to this list was what opened the way 

for its use in HAT-affected countries(63). The discovery of the combination therapy was a 

breakthrough in HAT treatment as it was the first new registered HAT drug since 1981(57). 

However, melarsoprol still remains the only treatment for the second stage of rhodesiense 

sleeping sickness(1).  

Figure 12. Chemical structure of nifurtimox- a nitroguran 
derivative (63) 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=2848007_1756-3305-3-15-6.jpg
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Vector control 

 One other way through which HAT is controlled, apart from chemotherapy, is vector 

control. By controlling the vector, transmission of HAT is reduced and people are protected(64). 

One of the methods of vector control uses insecticide-treated and non-treated fly traps or 

screens which allow for a reduction in fly density in areas where it is high(1,4). Some of the 

traps are color-baited as it was discovered that the flies are drawn to blue/black 

colors(27).Other available control methods which are used include insecticide-treated cattle, 

aerial or ground spraying of low dose insecticides (such as pyrethroids) and the fogging of 

tsetse fly resting sites(21,65,66).  

Interestingly, vector control is also achieved through the introduction of sterile tsetse 

males into areas populated with the insects. This technique is referred to as SIT, sterile insect 

technique(21). The sterile males mate with the females but do not produce offspring. However, 

tsetse females can only mate once during their lifetime. Therefore, they themselves are 

practically rendered sterile as well and no new tsetse flies are produced(21,23). Considering 

that rhodesiense HAT is zoonotic in nature, control of the animal reservoir is the main 

challenge. For example, cattle are known to be major reservoirs of the disease(67). However, 

cattle can be treated with insecticides (a cost-effective method of vector control), but control of 

the disease and vector in wildlife living in game parks and protected areas is difficult(1). In the 

absence of prophylactic treatments against sleeping sickness, vector control is very important 

and research continues to be done to improve control techniques(64). 
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Fexinidazole 

 The harmful side effects of current HAT treatments, especially melarsoprol, the only 

treatment for late stage HAT, along with the report of treatment failures led to the search for 

new drugs against HAT(68). Research was performed to find not only new HAT drugs but also 

effective and safer ones as well(3). The newly discovered drug would also be ideal if it could 

treat both the haemolymphatic and meningo-encephalitic stages of sleeping sickness as this 

would preclude staging of the disease and its associated difficulties(57).  

Fexinidazole (1H-imidazole,1-methyl-2-[{4-

methylthio} phenoxy] methyl] 5-nitroimidazole), a 2-

substituted 5-imidazole organic compound, is a HAT drug 

that is in phase II/III clinical trials for use against HAT(3,69). 

The chemical structure of the drug can be seen in fig. 

17(69). It belongs to the nitroimidazole group of drugs 

which in turn belong to the nitroheterocyclic family of 

drugs. Nitrofurans such as nifurtimox belong to the 

nitrohetrocyclic group of drugs as well. Nitroheterocyclic 

drugs all have the same general mode of action(70). In fact, 

it was the success reports of nifurtimox used in combination with eflornithine which led to a 

renewed interest in nitro-based drugs as treatment for infectious diseases(71). This resulted in 

the rediscovery of Fexinidazole and its efficacy in treating HAT by the Drugs for Neglected 

Diseases initiative (DNDi)(69). The drug was actually first synthesized in 1978 and showed 

promise, along with its primary metabolites (shown in fig. 17), as treatment against organisms 

Figure 13. Chemical structures of 
fexinidazole and its primary metabolites 
(70). 
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such as Trypanosoma cruzi and Entamoeba histolytica(72). However, development of the drug 

was not followed up after preclinical studies. DNDi rediscovered it while searching for old and 

new imidazoles with activity against T.brucei (72). Pharmacological assessment of fexinidazole 

in mouse models showed that the drug is effective in treating both the haemolymphatic and 

meningo-encephalitic stages of sleeping sickness. Additionally, in vivo and in vitro studies have 

demonstrated that it exhibits activity against both T.brucei gambiense and T.b rhodesiense(73). 

Therefore, Fexinidazole has shown promise as the ideal drug to be used against HAT.  

Combination therapy 

 The use of NECT against HAT and its breakthrough in the treatment of the disease 

exhibit the advantage of combination therapies. Drug combination therapies often used to 

result in increased efficacy, decreased toxicity, and delayed onset of drug resistance in the 

target parasites(57). Emergence of parasitic resistance is one of the major drawbacks of long-

term monotherapies, hence why combination therapies are used(63). The reasoning behind the 

use of combination therapies to combat or decrease potential resistance is that the likelihood 

of parasites developing resistance to two compounds is much lower than the likelihood of 

resistance to just one compound(71). Therefore, for the combination therapy to reduce the 

likelihood of resistance, the two drugs should be chemically unrelated, making cross-resistance 

between the two unlikely(74). If the two drugs are chemically unrelated, then they likely have 

different modes of action and can contribute to the decreased resistance potential. This is 

supported by the demonstration of cross-resistance between nifurtimox and fexinidazole which 

are both nitroheterocyclic drugs(70). The cross-resistance study showed that nifurtimox-

resistant T.brucei cells exhibited relative resistance to fexinidazole as well. This phenomenon 
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was also observed between fexinidazole-resistant trypanosomes and nifurtimox treatment(71). 

However, nifurtimox-resistant cells were still sensitive to pentamidine and eflornithine, both 

chemically unrelated drugs(71). Ideally, partner drugs for new antitrypanosomal drugs should 

be found before widespread clinical use of the new drug. 

 The exact mechanism of action of nitroheterocyclic drugs such as fexinidazole is not 

known(70). However, they are believed to be prodrugs which, when reduced, cause damage to 

DNA, proteins, and lipids(71). They do this by relying on nitroreductase enzymes (NTR) to 

catalyze their reduction, producing cytotoxic species such as the superoxide anion and the 

hydroxyl radical(71,72). This mode of action is different from that of eflornithine which inhibits 

an enzyme involved in polyamine synthesis. Therefore, considering all the information 

presented on the advantage of combination therapies, it is my hypothesis that eflornithine will 

be the ideal partner drug for fexinidazole.  

Proposed experiment 

 Eflornithine’s ability to serve as the partner drug for Fexinidazole will be determined by 

testing the efficacy of the combination therapy against T,brucei in comparison to the efficacy of 

Fexinidazole monotherapy. Before this is done, however, the optimal concentration of 

eflornithine to be used in conjunction of Fexinidazole must be found. In addition, the 

combination therapy will be tested against lab-generated fexinidazole-resistant (FxR) T.brucei 

to determine sensitivity of the trypanosomes to the drug combination. 

Methods and tools 

Cell line and culture condition:  
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The T.b brucei S427 bloodstream form will be used in all experiments. The cells will be 

cultured according to the protocol of Sokolova et al(71). The cells will be cultures at 37°C in 

HMI9-T medium. The medium will be supplemented with 2.5 μg/ml G418 according to the 

protocol. Fexinidazole-resistant (FxR) cells will also be cultured in these conditions. 

 Determination of optimal eflornithine dose in vitro:  

This growth inhibition assay will be done according to the protocol used by Kaiser et 

al(74). Five different concentrations of eflornithine will be used in conjunction with 200mg of 

Fexinidazole. The different combinations will be introduced into 96-well plates along with the 

culture medium. Two additional plates will be used, one with no drugs added and another with 

200mg of Fexinidazole only. The wells will then be inoculated with 2000 trypanosomes. 

Incubation of the cell cultures will be done at 37°C under a humidified 5% CO2 atmosphere for 

70h. Trypanosome growth inhibition caused by the different drug combinations and 

monotherapy will be analyzed using a microplate fluorescence scanner. The eflornithine 

concentration which is most effective in combination with fexinidazole will be used in 

subsequent assays.   

Determination of combination therapy efficacy: 

 This part of the experiment will be done in vivo using three groups of adult NMRI male 

mice which will be fed and kept under standard conditions. Each group will contain ten mice for 

the purpose of this experiment. Infection of the mice with wild type (WT) T.brucei 

trypanosomes will be done by inoculating them (intraperitoneally) with 104 of the parasite in 

0.2mL of HM19-T medium(74). Forty-eight hours post-infection, one group will be injected with 
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Fexinidazole (200mg/kg), one will be injected with the combination of fexinidazole and 

eflornithine, and the last group will be left untreated. This group will serve as the control. The 

treatment will be repeated for three days. Mice will be monitored over a period of thirty days 

both for clinical signs of infection and parasitemia levels. Clinical signs include raised hair coats, 

dullness, excessive sweating and decreased appetite which normally coincide with a peak in 

parasitemic levels(75). Parasitemia levels will be determined using a hemocytometer on wet 

blood smears extracted from the tail. The blood smears will be examined microscopically as 

well.  

Generation of Fexinidazole-resistant (FxR) cells: 

 Fexinidazole-resistant T.brucei  cells will be generated in vitro according to the protocol 

described by Wyllie et al(70). FxR cells will be generated by exposing the parasitic cells to the 

continuous presence of Fexinidazole in culture. The cells will be subcultured in media with drug 

concentration increasing in a step-wise manner starting with a sublethal concentration of 1.0 

μM until they are surviving and growing in 50 μM of Fexinidazole. Cloning of the now resistant 

cells will be done after 140 days of the cells in culture. Cloning will be achieved in the absence 

of Fexinidazole using limited dilution techniques. The cloned cell lines will then be tested for 

resistance to fexinidazole and the cell line displaying the most resistance will be used for 

subsequent experiments.  

Determination of combination therapy efficacy against FxR cells: 
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  This part of the experiment will be set up like the other in vivo study described above. 

However, mice will be inoculated with FxR cells rather than WT cells. Parasitemia levels will also 

be determined the same way.  

Proposed results 

 If eflornithine eventually proves to be the ideal partner for the combination therapy, 

first, one of the three doses of eflornithine tested in conjunction with Fexinidazole will prove to 

be most effective. In other words, the drug combination involving this optimal dose will show a 

faster rate of activity against trypanosomes than the monotherapy and the other drug 

combinations. Once this optimal dose is determined, the efficacy of the monotherapy will then 

be compared to that of the monotherapy in vivo. Decreased parasitemic levels in comparison 

with the monotherapy should also be observed in this experiment. 

 Trypanosome resistance to Fexinidazole will be induced using the experimental protocol 

described above. The resulting T.brucei cell line will then be cloned as described in the 

experimental protocol. The cloned cell line that displays the most resistance to Fexinidazole will 

then be used for further testing. In vivo, this cloned cell line should be more sensitive to the 

eflornithine and Fexinidazole combination therapy than the monotherapy. In other words, 

parasitemic levels in FxR-infected mice should be lower when treated with the combination 

therapy in comparison to the mice treated with the monotherapy. 

 With combination therapies, there are two possible effects that can be observed in the 

results, synergistic or additive. A synergistic effect will yield results showing that the 

combination therapy was more effective, displaying lowered parasitemic levels over a shorter 
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time period than fexinidazole monotherapy. Conversely, an additive effect will yield results 

which show that the combination therapy is not inferior to the monotherapy alone, proving it is 

just as effective as clearing parasitemia as the monotherapy. It is difficult to predict which 

combined effect the two drugs will have when used in combination without the actual 

experiment being carried out. 

Discussion 

 Fexinidazole has proven to be the ideal drug to be used in treating HAT-infected 

patients. Its status as a model HAT drug is due to its observed efficacy in treating both the early 

and late stages of Gambiense as well as Rhodesiense HAT. However, trypanosome resistance to 

the drug seemed to be generated with relative ease in the laboratory in the Sokolova et al. 

study(74). FxR parasites for the experiment in this paper will be generated using Sokolova’s 

techniques as well. Although this resistance was deliberately induced in vitro and is not fully 

predictive of actual human resistance, potential parasitic resistance is still an issue that must be 

taken into account. The use of eflornithine, a chemically unrelated drug to Fexinidazole, as a 

partner drug in a combination therapy is a possible solution to this issue. Depending on the 

results obtained from the experiment, the combination of fexinidazole with eflornithine will, 

hopefully, either have a synergistic toxic effect on the trypanosome cell or an additive one. 

Although the additive toxic effect of eflornithine will not preclude the use of the combination 

therapy, a synergistic effect is preferable as this will contribute even more to the advantage of 

the combination therapy. Additionally, this experiment will be carried out according to FDA 

protocols for product development under the animal rules(76). Therefore, two mice from each 
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group will be sacrificed and necropsied to ensure that the two drugs, when used in conjunction 

with each other, do not have or cause any unforeseen adverse effects and is well-tolerated.  

 Fexinidazole has been effective in treating both the early and late stages of sleeping 

sickness in mice in vivo at 100mg/kg or 200mg/kg depending on the subtype of the disease(74). 

The use of a 200mg/kg dose in the conduction of the proposed experiments is based on this 

finding. However, further testing may prove that the combination therapy works just as well 

with a reduced dose. It is also possible that a higher dose of Fexinidazole will be more effective. 

Although this is unlikely, the 50% lethal dose of Fexinidazole of >10,000 mg/kg means that 

toxicity of this higher dose will be low if present at all. 

 Trypanosoma brucei brucei parasites are going to be used in this study because they are 

bloodstream forms commonly used in experimental models for HAT. Future studies should be 

done with T.b gambiense and T.b rhodesiense trypanosomes to ensure that the combination 

therapy has the same effect as that observed on the bloodstream T.b brucei parasites. These 

future studies should also observe the effect of the combination therapy on both the early and 

late stages of HAT. 

Conclusion 

 It is thought that nitroheterocyclic drugs are particularly vulnerable to the development 

of drug resistance because they rely on only one enzyme for activation(71). According to the 

cross-resistance study from which the experimental protocol for generating FxR cells was 

derived, the ability to generate FxR and NfxR (nifurtimox-resistant) trypanosomes with relative 

ease supports this hypothesis. Therefore, a combination therapy to reduce potential resistance 



T o m a  | 34 

 

to Fexinidazole is imperative as parasitic resistance to the drug will have serious consequences 

on the use of nitroheterocyclic drugs against HAT in the future along with current treatments 

for the disease(71). If the proposed results from this experiment are obtained, then this would 

prove eflornithine’s potential as the ideal partner drug to be used in conjunction with 

Fexinidazole in a combination therapy because it would either have an additive or synergistic 

effect against T.brucei parasites while also reducing potential resistance to the drug. However, 

before the combination therapy can be used clinically, its safety must be established according 

to the preexisting FDA requirements for establishing the safety of new drug and biological 

products(76). 

 There is no prophylactic treatment for sleeping sickness, instead, its control is based 

primarily on chemotherapeutic measures. The discovery of Fexinidazole and its status as a 

potential ideal drug against HAT once it completes clinical trials was a breakthrough in the 

control and management of the disease. It is therefore, likely that the drug will experience long-

term usage in treating sleeping sickness. However, with long-term monotherapies, the potential 

for development of parasitic resistance is more likely and can be countered by using partner 

drugs for a combination therapy. This thesis was designed to show eflornithine’s potential as 

the partner drug for Fexinidazole. If the partnership is shown to be effective, then the 

combination therapy will contribute greatly towards the WHO goal of HAT elimination by 

2020(2). 
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