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Investigating the Effects of Increasing Anti-AMA1, Anti-

MSP1, and Anti-MSP2 In Preventing Malaria Incidence 
April Skipper, College of Natural and Health Sciences, Southeastern 

University 

                    

Abstract: 

Malaria is a life-threatening illness that 3.2 billion people, half of the world's population, are at 

risk of contracting. In 2015, there were 214 million malaria cases and 438,000 deaths caused by 

the disease. It is caused by Plasmodium parasites which infect humans through the bite of the 

Anopheles mosquito. The four species of Plasmodium that are known to cause malaria are P. 

falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi. The symptoms of malaria greatly 

resemble symptoms of a common cold, so accurate diagnosis can be a challenge. Symptoms 

commonly include fever, headache, vomiting, but can progress to include anemia, respiratory 

distress, cerebral problems, multi-organ failure, and death in cases of severe malaria.  

The most available and effective treatment for malaria currently is artemisinin-based 

combination therapy (ACT). Due to widespread misdiagnosis and overuse of effective drugs, 

many strains of Plasmodium have become resistant to common antimalarial drugs. Multi-drug 

resistant strains may become a larger problem, so development of an effective malaria vaccine is 

an important step in malaria control and hopeful eradication.  

In some individuals, immunity against severe malaria can be acquired by the age of 5 years. The 

rapid development of immunity against severe malaria shows that a vaccine targeting young 

children is feasible. The exact immunological basis of this protective immunity is still unknown. 

It was seen through epidemiological studies that the antibody anti-AMA1 was present in a larger 
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proportion in immune individuals than in non-immune individuals. It was also found that 

merozoite surface proteins 1 and 2 (MSP1 and MSP2) seem to be major targets of antibody-

mediated complement-dependent inhibitory activity. This study aims to test whether these 

antibodies do successfully prevent malaria infection in mouse models, both individually and in 

combination. 

Specific Aims: 

1. To determine whether an increase in anti-AMA1, anti-MSP1, and anti-MSP2 antibodies 

independently decrease the incidence of malaria in mouse models. 

 -Mouse models will be injected with one of these three antibodies 

 -Mice will be put in a container where Plasmodium-carrying mosquitoes are added 

 -Blood smears will be taken from mice and analyzed for the presence of Plasmodium 

2. To determine whether an increase in a combination of anti-AMA 1, anti-MSP1, and anti-

MSP2 decrease the incidence of malaria in mouse models. 

 -Mouse models will be injected with a combination of the three antibodies 

 -Mice will be put in a container where Plasmodium-carrying mosquitoes are added 

 -Blood smears will be taken from mice and analyzed for the presence of Plasmodium 

3. To determine whether injection of an antibody formulation in pregnant mice will induce 

malaria immunity in their pups. 

 -Pregnant mouse models will be injected with the most effective antibody combination 
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 -Mouse pups will be born and put in a container where Plasmodium-carrying mosquitoes 

 are added 

 -Blood smears will be taken from mice and analyzed for the presence of Plasmodium 
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Introduction 

Malaria Statistics: 

As of January 2016, 3.2 billion people are at risk for contracting malaria.1 These people live in 

areas of high malaria transmission, which includes 106 countries.2 In 2015 alone there were 214 

million malaria cases with 438,000 deaths.1 Of these 438,000 deaths, 78% of them occurred in 

children under the age of 5.3 Although the death rate from malaria is steadily decreasing (Figure 

1),  malaria is still the leading cause of death and disease in many developing countries, with 

young children and pregnant women being the most affected groups due to their 

immunocompromised status.2  

 

 

Figure 1. Percentage decrease in malaria death rate between 2000 and 

2015.59 
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Of the countries affected, Sub-Saharan Africa carries a high share of the malaria burden. In 2015, 

88% of all malaria cases and 90% of malaria deaths were in this area alone.4 Though malaria is 

still such a large health burden to half of the world's population, it is a preventable and curable 

disease. Many countries have eradicated or significantly reduced the incidence of malaria, which 

can be seen in Figure 2.  

 

 

 

 

 

Figure 2. Estimated number of malaria cases in 2000 and 2015 

by region.60 As shown here, most continents have significantly 

reduced their malaria incidence rates. Africa still carries a very 

large portion of the malaria burden, followed by South-East 

Asia. 
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Why Malaria is Still a Problem: 

Though malaria is preventable and curable, it still remains a large global health problem for 

many reasons. Most affected areas include poor and underdeveloped regions.2 Though malaria is 

treatable, an infected patient would need to be diagnosed and begin treatment very quickly, 

which is nearly impossible in many remote areas.5 Even if the affected patient had access to local 

healthcare, the cost of visiting a physician, diagnostic tests, and medication is likely to be too 

high for the patient's family due to the poverty-stricken areas in which malaria is endemic.  

In addition to these barriers, the symptoms of malaria greatly resemble many other sicknesses 

including the common cold.6 This causes a high level of misdiagnosis, which in the rapidly-

progressing case of malaria, can easily result in death. Finally, malaria still remains a large 

problem due to the scarce availability of drug treatments and other preventative measures in the 

affected areas.5 

Life Cycle of Parasite: 

Malaria is caused by the Plasmodium parasite which is spread to humans through infected female 

Anopheles mosquitoes, serving as malaria vectors.4 There are five species of Plasmodium known 

to cause malaria in humans.7 The first is P. falciparum, which is very prevalent in Sub-Saharan 

Africa, can cause severe malaria due to its rapid multiplication in the blood.8 P. vivax, found 

mainly in Asia, has a dormant liver stage that can reactivate months or years after inoculation in 

the body.8 P. ovale is found in Africa and western Pacific islands, and is similar to P. vivax.8 P. 

malariae has a three-day life cycle and can cause chronic infection that can last an entire 

lifetime.8 Finally, P. knowlesi is found in Asia and has a 24-hour replication cycle, making it 

rapidly progress to severe infection.8  
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The parasite acts on two hosts: humans and the mosquitoes.9 Once the parasite has infected the 

mosquito, the mosquito transmits the parasite to humans through a bite in the form of 

sporozoites.10 In humans, parasites grow and multiply in hepatocytes before moving to 

erythrocytes.10 While inside erythrocytes, parasites continue to grow and begin destroying the 

erythrocytes they occupy, releasing daughter parasites, or merozoites, that then continue with 

this cycle.11 A detailed representation of the Plasmodium life cycle can be seen in Figure 3. 

 

 

As seen in Figure 3, the first step of infection takes place when a parasite-infected female 

Anopheles mosquito bites a human, injecting the parasite's sporozoites into the human host.9 

This then begins the exo-erythrocytic cycle, where the sporozoites travel to the liver and infect 

hepatocytes. Inside hepatocytes, the sporozoites mature into schizonts. After fully maturing, the 

Figure 3. Life cycle of Plasmodium parasite.9 
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schizonts cause the hepatocyte to burst, releasing merozoites into the blood stream. Plasmodium 

vivax and Plasmodium ovale have the special ability of keeping some of the parasite, known here 

as hypnozoites, in the liver cells which can cause a relapse by rupturing and releasing into the 

bloodstream weeks or years later. This is known as a dormant stage.9 

This then begins the erythrocytic stage of the parasite life cycle. In this stage, merozoites 

undergo asexual replication inside erythrocytes.9 As shown in step 5, merozoites are infecting 

red blood cells, where they become immature trophozoites. This is referred to as a ring stage 

because the parasite takes the shape of a ring inside the erythrocyte. The immature trophozoite 

now has two options, it can become a mature trophozoite or a gametocyte. Mature trophozoites 

turn into schizonts, which cause the erythrocyte to rupture, releasing more schizonts into the 

bloodstream. The schizonts then begin the erythrocytic stage again in a cyclical fashion as long 

as there are still erythrocytes to infect.9  

The immature trophozoites that mature into gametocytes enter into a sexual erythrocytic stage.9 

These gametocytes are either male, microgametocytes, or female, macrogametocytes. If an 

infected human host receives a second bite from a female Anopheles mosquito, these male and 

female gametocytes will be ingested by the mosquito and will enter the sporogonic cycle, part C 

in Figure 3, inside the mosquito's stomach.9  

To begin this stage, microgametes enter into the macrogametes, which generates a zygote.9 The 

zygote becomes elongated and gains the ability to move on its own. These qualities give the 

zygote the ability to carry out its next function. At this point, the zygote is referred to as an 

ookinete. This ookinete inserts into the midgut wall of the mosquito, where it develops into an 

oocyst. An oocyst becomes much more round in shape than an ookinete. The oocyst then grows 
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and ruptures, which releases sporozoites into the mosquito host. These sporozoites enter into the 

mosquito's salivary glands, where they are primed and ready to enter a human host with the 

mosquito's next bite.9 

Where Malaria Occurs: 

Malaria transmission is found in tropical and subtropical regions of the world.12 Many of these 

places are poor and underdeveloped communities.2 The main geological factor affecting malaria 

transmission is temperature.12 Anopholes mosquitoes require a relatively warm environment to 

survive and multiply.13 Plasmodium cannot complete its growth cycle in temperatures below 20° 

C.12 Even in countries where malaria is endemic, transmission does not occur or significantly 

decreases during colder seasons, at high altitudes, and in deserts.12 Regions closer to the equator 

have more intense transmission and longer transmission seasons.12  

As mentioned before, Sub-Saharan Africa experiences the bulk of the malaria burden, with 88% 

of all malaria cases in 2015 occurring there.4 In temperate areas of western Europe and the 

United States, public health measures and economic development have eliminated malaria.12 

However, these areas do have Anopheles mosquitoes, so reintroduction of malaria is always a 

risk.12 Areas where malaria transmission occurs can be seen in Figure 4. 
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Drug Treatments 

Drugs Against Plasmodium: 

Drugs used to treat P. falciparum malaria target the intraerythocytic stage of the parasite.14 This 

stage of the parasite life cycle is where symptoms first present in an infected patient.14 Three 

broad classes of drugs are used are quinolines, antifolates, and artemisinin-combination 

therapies.14 Quinolines act as hemozoin inhibitors.15 Heme is toxic to Plasmodium, so the 

parasite must use hemoglobin proteolysis for nutrients.15 The Plasmodium food vacuole lyses 

hemoglobin, producing hemozoin.15  

Figure 4. Map of malaria transmission.12 
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Antifolates block the folic acid synthesis pathway by binding to tetrahydrofolate dehydrogenase 

more tightly than to the host enzyme.16 This prevents the parasite from using pyrimidines 

synthesized in the host, forcing it to create its own.14 Artemisinin-combination therapies are 

widely the most commonly used treatment for P. falciparum infection.14 Artemisinins come from 

a Chinese herb called Artemisia annua, and are suspected to work through a mechanism similar 

to that of quinolines, reversing the conversion of heme to hemeozoin.14 They carry out their 

functioning in the parasite mitochondria by forming peroxide bridges.17 Peroxide bridges can be 

cleaved by iron ions to form free radical oxygen species. These species would then go on to 

attack the parasite merozoites.112 Though the three broad classes of antimalarial drugs were 

discussed, there are seven more specific classes, which are seen in Figure 5.61 

 

Figure 5. Seven 

classes of 

antimalarial drugs 

and the structures of 

the compounds in 

each class.61 
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Occurrence of Antibiotic Resistance:  

The first occurrence of antibiotic resistance in malaria drugs occurred in 2000, when mutations 

within P. falciparum conferred resistance to chloroquine in Colombia and Thailand.18 Before this 

resistance, quinolines had been used to fight malaria since the 17th century.18 Chloroquine-

resistant mutations have been spreading throughout most endemic countries since this first 

occurrence.19 In response to this resistance, sulfadoxine-pyrimethamine largely replaced 

chloroquine in areas with chloroquine resistance.20  

Unfortunately, resistance to sulfadoxine-pryimethamine rapidly evolved and now also occurs in 

most endemic regions.20 To counter this resistance, artemisinin-based combination therapies 

began to be largely used.21 These have higher production costs, which is a significant barrier to 

translation into endemic areas.22 Antibiotic resistance in parasite DNA evolves very quickly, so 

development of affordable and effective drugs is a major problem in fighting the spread of the 

disease.23  

The Search for a Vaccine Candidate 

Overview of Vaccine Research: 

In 2007, an official research and development agenda for malaria eradication was established, 

with the goal of completely eradicating the disease.24 One large strategy to achieve this was to 

support the development of a vaccine. Much research has been put in to the search for a malaria 

vaccine, and the vaccine RTS,S/Mosquirix has been the most advanced thus far.25 This vaccine 

protects against P. falciparum and has been approved by the European Medicines Agency 

(EMA) for children aged 6 weeks to 17 months.26  
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In the development of a vaccine, finding the best target, a good production and delivery method, 

and appropriate formulation and adjuvants are very important and has proven difficult.27,28 

Achieving large-scale production of protein antigens with the correct folding is necessary for 

achieving highly specific high titres in humans, which has proven to be another difficult task.29-31 

Escherichia coli, Lactococcus lactis bacterium models, Baculovirus, yeast, plant-based systems, 

and algae are among the many expression systems being used for recombinant antigens.32-37 

Another delivery route being researched is particle-delivery technology.38 This would include the 

use of virus-like particles and nanoparticles.39 An emerging field in vaccine research is using 

DNA vaccine technology, which is still very early in its development.40,41  

Another route being researched is providing immunity through the use of different antigens. 

Most of these are still in the preclinical stage but are being considered for their first test in 

humans.42 Two different recombinant strategies targeting Pfs25 antigen are in phase I clinical 

trials and are the only candidates targeting sexual, sporangonic, or mosquito-stage antigens.43,44 

Even so, these are only a small portion of the many malaria vaccines being tested.45 

RTS,S: 

RTS,S is a vaccine made of a liposome-based adjuvant (AS01) and hepatitis B virus surface 

antigen (HBsAg) virus-like particles that incorporate a portion of the Plasmodium falciparum-

derived circumsporozite protein (CSP) genetically combined with HBsAg.62 If approved by 

regulatory authorities, this vaccine would be used for infants between 6 weeks and 17 months 

old. It also will have been in-the-making for more than 30 years. A timeline listing the major 

events in the creation of RTS,S can be seen in Figure 6. 
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RTS,S targets the circumsporozite protein, which plays a large role in maturing the Plasmodium 

oocyst in the midgut of the mosquito.63 Only a small portion of sporozites in the salivary glands 

of the mosquito are inoculated into the bloodstream of the human.63 Due to this parasite 

numerical bottleneck, it is thought that the parasite is most vulnerable to immune attack as it 

switches between the mosquito host and human host.64 This provides a good opportunity to 

induce a novel immune response through active immunization.65 The circumsporozite protein is 

located on the surface of the parasite sporozoite and is responsible for forming a coat on the 

parasite surface.66 

Figure 6. Timeline of the development of RTS,S spanning 

more than 30 years.62 GlaxoSmithKline (GSK) and the Walter 

Reed Army Institute of Research (WRAIR) initiated this 

development in 1984, and the PATH Malaria Vaccine Initiative 

(MVI) was established in 2001. RTS,S entered clinical trial 

Phase III in 2009 and was completed in 2014. 
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In its most recent Phase III clinical trials, RTS,S was evaluated in eight different African 

countries.62 Vaccine efficacy has proven to be modest with varying ranges of efficacy depending 

on the trial site tested. Some sites showed up to 87.6% efficacy, while others showed close to 0% 

efficacy.62  

 

 

 

Figure 7. Vaccine efficacy and impact against clinical malaria 

for Phase III trial in eight African study sites.62 (A) represents 

children aged 5-17 months, and (B) represents infants aged 6-12 

weeks. The R3C group received three doses of RTS,S and a 

control booster dose, while the R3R group received three doses 

and a booster dose of RTS,S. 
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Figure 7 shows final results for the phase III efficacy and safety trial MALARIA-055. This was 

a double-blind, randomized, controlled trial where participants ages 5-17 months or 6-12 weeks 

received either three doses of RTS,S and a booster, three doses of RTS,S and a control vaccine, 

or only control vaccines throughout. It is noted that the number of cases of clinical malaria 

averted had a greater impact in sites with higher malaria burden. Figure 7 shows vaccine 

efficacy and impact against clinical malaria. A Forest plot is shown of efficacy with 95% 

confidence intervals for the group that received four doses of RTS,S (R3R). A bar graph is 

shown for the number of cases averted for groups that received three doses (R3C) and four doses 

(R3R) of RTS,S by site with A representing the 5-17 months age group and B representing 6-12 

weeks age group. Although the vaccine efficacy at some sites is promising, there is still a great 

deal of uncertainty about just how effective RTS,S would be overall due to the large discrepancy 

in efficacy rates across all testing sites. Thus, it remains necessary to explore more vaccine 

candidates. 

Experimental Design 

Background: Epidemiological studies have shown that immunity against severe malaria is 

acquired by the age of 5 years in areas with intense malaria transmission.46-48 In these same 

areas, immunity against uncomplicated malaria is usually achieved by adulthood, while 

immunity against asymptomatic infection is never achieved.49,50 The rapid acquisition of 

immunity against severe malaria supports the claim that a malaria vaccine targeting young 

children could be very effective. Antigens found on the surface of infected erythrocytes (iRBC) 

inhibit sequestration of  iRBCs, and promote opsonization of iRBCs for phagocytic attack.51-53 It 

was found through epidemiological data that antibodies to apical membrane antigen 1 (AMA1) 

significantly reduce the odds of developing severe malaria in children 0-5 years old, suggesting 
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that it is a viable vaccine candidate for young children.54 It is also suggested that passively 

transferred maternal IgG contributes to protective immunity.54  

The mechanism through which many antibodies mediate immunity to malaria has long barred 

vaccine development. It has recently been found that acquired human anti-malarial antibodies 

promote complement deposition on the Plasmodium merozoite.55 This plays a large role in 

inhibiting erythrocyte invasion through C1q fixation and activation of the classical complement 

pathway.55 Epidemiological data suggests that inhibitory activity was mainly mediated by C1q 

fixation with merozoite surface proteins 1 and 2 (MSP1 and MSP2) being the major targets.55 

This suggests that antibody-mediated complement-dependent inhibitory activity could be 

induced by immunization with a merozoite surface-protein vaccine.55  

Apical Membrane Antigen 1: 

Apical membrane antigen 1 (AMA1) is a transmembrane protein in the Apicomplexa phylum 

and is thought to help shape the tight junction formed between the Plasmodium parasite apex and 

the host cell.67-73 This tight junction formed between the Plasmodium parasite and host 

erythrocyte can be seen in Figure 8. AMA1 has a cytoplasmic tail which is reported to bind to 

aldolase. The ectodomain of AMA1 binds in parasite extracts to the rhoptry neck 2 (RON2) 

protein.70-72 RON2 proteins localize at the tight junction where the parasite inserts into the host 

cell membrane.  

Antibodies that inhibit the AMA1-RON2 interaction reduce host cell invasion by Plasmodium 

merozoites.74-76 It was shown that AMA1-deficient merozoites displayed a three- to five-fold 

decrease in overall invasion efficiency in penetrating host cell erythrocytes.77 Also, a large body 

of work shows that antibodies to AMA1 are effective in blocking erythrocyte invasion.78-80 This 
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effect may also reduce sporozoite invasion of hepatocytes.81 A study found that strategies 

targeting only AMA1 would not be effective.77 Thus, a vaccine targeting a combination of 

AMA1 and another target may prove to be effective in every stage of the parasite life cycle. 

 

 

 

Merozoite Surface Protein 1: 

Merozoite surface protein 1 (MSP1) is found on the surface of the merozoite in the Plasmodium 

falciparum parasite and is implicated in the process of merozoite invasion of the erythrocyte.83,84 

Among the several events driving erythrocyte invasion is merozoite binding to sialic acid 

residues on erythrocyte receptors.117 MSP1 is required for attachment of merozoites to the 

Figure 8. A Plasmodium merozoite (Mz) forming a tight 

junction (TJ) with a host red blood cell (RBC) in order to 

invade the RBC and continue its parasitic life cycle.82 
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specific host receptor named Band 3.118 MSP1 is also required for normal parasitic 

development.119 MSP1 is synthesized as a precursor and then processed in two steps. The 

primary step produces a complex of four fragments present on the merozoite surface, and the 

secondary step at invasion results in the shedding of the complex from the surface. After this 

shedding, only the C-terminal domain remains on the parasite surface by a 

glycosylphophatidylinositol moiety.85 This C-terminal domain remaining is well conserved and 

contains two epidermal growth factor-like (EGF-like) domains that play a large role in merozoite 

invasion in erythrocytes. Thus, antibodies that target this EGF-like domain on the C-terminal 

motif of MSP1 would prevent host invasion.116 

A ribbon diagram of the C-terminal domain containing EGF-like domains from Plasmodium 

falciparum MSP1 can be seen in Figure 9. Several studies show that the protective immune 

responses against P. falciparum MSP-1 in mice are directed against the C-terminal domain.86-91A 

possible mechanism for inhibition of merozoite invasion has been proposed to be through the 

inhibition of MSP-1 processing by conformation-specific antibodies.92 
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Merozoite Surface Protein 2: 

Merozoite surface protein 2 (MSP2) is a blood-stage protein that is essential for completion and 

viability of the Plasmodium life cycle.94-97 It has been found to induce specific antibodies that are 

active against parasite merozoites and are associated with protection in malaria endemic areas.98-

100 It is a glycosylphosphatidylinositol-anchored protein found on the merozoite surface and has 

200-250 amino acids, all encoded by one exon on chromosome 2. MSP2 has conserved N and C 

terminal (C) regions flanking a polymorphic central repeat region.101 A non-repeat semi-

conserved dimorphic (D) region defines two allelic families of MSP2. These families are 3D7 

and FC27.102  

A specific semi-immune antibody against MSP2 is cytophillic IgG3. IgG3 along with IgG1 

antibodies are thought to play a role in antibody-mediated mechanisms of parasite clearance.103-

106 In a phase I  clinical trial, a recombinant vaccine candidate containing both 3D7 and FC27 

Figure 9. Ribbon-diagram 

representation of the structure of the 

EGF-like domain from the Plasmodium 

falciparum merozoite surface protein 

1.93 
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forms of MSP2 showed that subjects elicited antibodies that were specific for both forms of 

MSP2 and active in inhibiting parasite growth in antibody-dependent cellular inhibition.107 Thus, 

both allelic forms of MSP2 remain a possible vaccine candidate in a combination vaccine. The 

crystal structure of anti-MSP2 fragment complexed with both allelic forms of MSP2 can be seen 

in Figures 10 and 11. 

 

 

 

Specific Aim 1: 

The first specific aim of this study is to determine whether independently increasing each 

antibody identified will decrease the incidence of malaria. We will begin with four groups of 

healthy humanized female mice.56 Female mice will be used because they are less aggressive, 

smaller, and less expensive than male mice. Mice used will be three weeks old.115 By this age, 

mice can open their eyes, have mobility, and can be successfully removed from their mothers.115 

Female mice reach sexual maturity by the age of six weeks.115 Therefore, female mice between 

Figure 10. Anti-MSP2 fragment in 

complex with 3D7-MSP2.108 

Figure 11. Anti-MSP2 fragment in 

complex with FC27-MSP2.109 
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the ages of three weeks to six weeks will closely represent the target age group for a vaccine in 

humans.115 Purchasing three week old mice will allow them to be viable for this study for three 

weeks. This will ensure that data can still be accurately collected and trials can be repeated if 

necessary.   

The process of humanizing a mouse to be used as a malaria mouse model can be seen in Figure 

12. The specific strain used will be the NOD/SCID/IL2Rγnull strain. This strain has shown to be 

the most effective in previous malaria studies using mouse models.113 In order to replicate the 

immunodeficiency that young children in malaria-endemic areas will be, the mice will be 

injected with liposomal-clodronate formulations.113 This injection will deplete murine phagocytic 

cells, and it has been shown that this produces a mouse model of malaria in which 100% of 

infected mice show development of P. falciparum-infected erythrocytes.114 

 

 

 

 

Figure 12. Humanizing a mouse to be used as a mouse model for malaria. 

A humanized mouse is a model where a mouse gene is replaced by the 

human gene. Then, the human protein domain is expressed while the mouse 

protein domain is suppressed in all cells and tissues.110 



P a g e  | 23 

 

One group will receive an injection of anti-AMA 1 antibodies, the second group will receive 

anti-MSP1 antibodies, the third group will receive anti-MSP2 antibodies, and the fourth group 

will receive an injection of phosphate buffer solution (PBS) to serve as a control group. All 

antibody formulations will be diluted in PBS. These groups and their injections are listed in the 

table below. Each group will include 25 mice, for a total of 100 mice to be used in specific aim 

1. 

 Anti-AMA1 Anti-MSP1 Anti-MSP2 PBS 

Group 1 X   X 

Group 2  X  X 

Group 3   X X 

Group 4    X 

 

The mice will then be placed in a large enclosure with four separate sections for each mouse 

group. The enclosure will be sectioned by a piece of hard plastic containing several small holes. 

Female Anopheles mosquitoes carrying the Plasmodium falciparum parasite will then be released 

into the mouse enclosures. The small holes in the plastic interior walls of the enclosure will be 

large enough for mosquitoes to pass freely through. A representation of this enclosure can be 

seen in Figure 13. 



P a g e  | 24 

 

 

After a period of time, the mosquitoes will be collected and the mice will be analyzed for the 

presence of a malaria infection. Blood smears will be collected from each mouse at three 

separate time intervals. Blood smears will first be taken immediately after mice are brought out 

of the enclosure, then again one day later, and finally one week later. Each sample will be stained 

with Giemsa stain, which will give parasites a distinct appearance, as seen in Figure 

14.57Samples will then be microscopically analyzed for the presence of Plasmodium falciparum 

parasites.  

Figure 13. A representation of the 

enclosure that will be used to house 

mouse groups. Mosquitoes will have the 

ability to pass freely through small holes 

in the interior walls separating mouse 

groups. The actual enclosure used will 

be larger and will contain a compartment 

for each mouse group.111 
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The DNA from these blood smears will then be extracted and PCR will then be performed to test 

for the presence of parasite nucleic acids.58 If a sample shows the presence of a parasite through 

microscopy or from PCR, that mouse will be considered to have tested positive for malaria 

infection. These results will then be graphed and analyzed to determine the effect of increased 

antibody levels on the incidence of malaria infection.  

Specific Aim 2: 

While specific aim 1 determined the effect of the three antibodies independently, specific aim 2 

will focus on determining the effect of using a combination of antibodies on malaria incidence. 

In this experiment, mice will be divided into 5 groups, each receiving a different combination of 

antibody injections. These combinations will be anti-AMA 1 and anti-MSP1, anti-AMA 1 and 

anti-MSP2, anti-MSP1 and anti-MSP2, and anti-AMA 1, anti-MSP1, and anti-MSP2. The final 

Figure 14. Blood smears stained with Giemsa stain.57 Giemsa stain 

gives parasites a distinct appearance inside the red blood cells, 

giving a clear indication of malaria infection. 
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fifth group will receive an injection of PBS and will serve as the control group. All antibody 

formulations will be diluted in PBS. Each group and their injections are listed in the table below. 

Each group will include 25 mice, for a total of 125 mice to be used in specific aim 2. 

 Anti-AMA 1 Anti-MSP1 Anti-MSP2 PBS 

Group 1 X X  X 

Group 2 X  X X 

Group 3  X X X 

Group 4 X X X X 

Group 5    X 

 

Mice will then be placed in separate attached enclosures, parasite-carrying mosquitoes will be 

released in enclosures, and blood samples from mice will then be taken at three separate time 

intervals as in specific aim 1. Blood smears will then be analyzed using microscopy and PCR as 

before, and results will be graphed and analyzed. 

Specific Aim 3: 

Specific aim 3 will test whether the antibodies analyzed previously can cross the placental barrier 

of a pregnant mother and induce acquired immunity in her fetus. The most effective antibody 

combination, as determined in specific aim 2, will be injected into pregnant female 

NOD/SCID/IL2Rγnull humanized mice. As a control, one group of pregnant mice will be injected 

with only PBS. Each group will contain 25 pregnant mice, for a total of 50 mice. The pregnant 

mice will then carry their pups to term and will give birth naturally. The pups will then be 

permitted to grow and mature normally. At three weeks of age, the pups will be placed in the 
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same enclosure as specified earlier, and female Anopheles mosquitoes carrying the Plasmodium 

parasite will be placed in the enclosure. As before, blood samples will be taken at three different 

time periods and will be analyzed by microscopy and PCR. Results will then be graphed and 

analyzed. 

Proposed Results 

In specific aim 1, I hypothesize that we will find a statistically significant difference between the 

mice with no antibody injection and the mice with anti-AMA1 antibody injection. In addition, I 

predict that a slightly statistically significant difference will be found both between the control 

group and the anti-MSP1 group, and between the control group and the anti-MSP2 group. These 

findings would suggest that anti-AMA1, anti-MSP1, and anti-MSP2 antibodies contributes to 

malaria immunity in some way.  

In specific aim 2, I hypothesize that a slightly significant difference will be found between the 

control group and each group containing two antibody injections (anti-AMA1 and anti-MSP1; 

anti-AMA1 and anti-MSP2; anti-MSP1 and anti-MSP2). In addition, I predict that a very large 

statistically significant difference will be found between the control group and the group 

receiving an injection of all three antibodies. These findings would suggest that the three 

antibodies tested not only contribute to malarial immunity, but that they also work 

synergistically. AMA1, MSP1, and MSP2 are all present of the surface of the parasitic 

merozoite. By adding antibodies specific for each of these antigens to a person's adaptive 

immunity arsenal, the immune system will be more than prepared to fight against all merozoites 

that enter the body if infected by a mosquito. 
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In specific aim 3, I hypothesize that a statistically significant difference will be found between 

the group of mice whose mothers were injected with antibody formulation and the control group. 

This hypothesis is based on the fact that IgG antibodies are capable of passing the placental 

barrier.120 This finding would suggest that the antibody formulation has the ability to cross the 

placental barrier and induce acquired immunity in an unborn fetus. This finding would be 

consistent with a finding from a previous study that suggests that some children born to mothers 

infected with Plasmodium while pregnant are born with B cells capable of secreting IgM and 

IgG antibodies to antigens AMA-1, MSP-1, and MSP-2.121 If these results align with that found 

from the previous study, it would show that Plasmodium falciparum antibodies do cross the 

placenta and activate fetal B and T cells in utero.121 This would be promising for the introduction 

of a malaria vaccine in malaria-endemic countries because the vaccine could target two groups 

(young children and pregnant mothers) rather than just young children.  

Future Studies 

If the results show that the three antibodies tested reduce the incidence of malaria, then the 

antibodies will serve as another possible target for a vaccine candidate. Further study into the 

degree of malaria protection each antibody or a combination of the antibodies produces should 

be done. Experimentation to determine the most effective dosage and concentration of antibodies 

should also take place since too low of a dose could produce ineffective results. 

Other studies should revolve around testing these antibodies' efficacy among various age groups, 

genders, and specific malaria risk groups (such as pregnant women or immunocompromised 

people). The efficacy rate among these different groups is very likely to differ from one another. 
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Another important research route to explore is to elucidate the mechanisms through which these 

antibodies inhibit parasitic infection.  

References 

1. WHO | 10 facts on malaria. WHO. http://www.who.int/features/factfiles/malaria/en/. Accessed 

February 26, 2016. 

2. Prevention C-C for DC and. CDC - Malaria - Malaria Worldwide - Impact of Malaria. 

http://www.cdc.gov/malaria/malaria_worldwide/impact.html. Accessed February 26, 2016. 

3. World Malaria Day 2016 » Key Facts. http://www.worldmalariaday.org/about/key-facts. 

Accessed February 26, 2016. 

4. WHO | Malaria. WHO. http://www.who.int/mediacentre/factsheets/fs094/en/. Accessed 

February 26, 2016. 

5. Against Malaria. The Against Malaria Foundation. 

http://www.againstmalaria.com/faq_malaria.aspx. Accessed February 26, 2016. 

6. Other Conditions With Symptoms Similar to Malaria | University of Michigan Health System. 

http://www.uofmhealth.org/health-library/hw118563. Accessed February 26, 2016. 

7. Five species | Medicines for Malaria Venture. http://www.mmv.org/malaria-medicines/five-

species. Accessed February 26, 2016. 

8. Prevention C-C for DC and. CDC - Malaria - About Malaria - Biology - Malaria Parasites. 

http://www.cdc.gov/malaria/about/biology/parasites.html. Accessed February 26, 2016. 



P a g e  | 30 

 

9. CDC - Malaria - About Malaria - Biology. http://www.cdc.gov/malaria/about/biology/. 

Accessed February 26, 2016. 

10. Life Cycle of the Malaria Parasite. 

https://www.niaid.nih.gov/topics/Malaria/Pages/lifecycle.aspx. Accessed February 26, 2016. 

11.  Parasite lifecycle | Medicines for Malaria Venture. http://www.mmv.org/malaria-

medicines/parasite-lifecycle. Accessed February 26, 2016. 

12. Prevention C-C for DC and. CDC - Malaria - About Malaria - Where Malaria Occurs. 

http://www.cdc.gov/malaria/about/distribution.html. Accessed February 26, 2016. 

13. Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON. The 

Effect of Temperature on Anopheles Mosquito Population Dynamics and the Potential for 

Malaria Transmission. Costa FTM, ed. PLoS ONE. 2013;8(11):e79276. 

doi:10.1371/journal.pone.0079276. 

14. Sadanand S. Malaria: An Evaluation of the Current State of Research on Pathogenesis and 

Antimalarial Drugs. Yale J Biol Med. 2010;83(4):185-191. 

15.  Foley M, Tilley L. Quinoline antimalarials: mechanisms of action and resistance and 

prospects for new agents. Pharmacol Ther. 1998;79(1):55-87. 

16. Ferone R. Folate metabolism in malaria. Bulletin of the World Health Organization. 

1977;55(2-3):291-298. 

17. Wang J, Huang L, Li J, Fan Q, Long Y, Li Y, et al. (2010) Artemisinin Directly Targets 

Malarial Mitochondria through Its Specific Mitochondrial Activation. PLoS ONE 5(3): e9582. 

doi:10.1371/journal.pone.0009582 



P a g e  | 31 

 

18. Kim, Y. & Schneider, K. A. (2013) Evolution of Drug Resistance in Malaria Parasite 

Populations. Nature Education Knowledge 4(8):6 

19. Escalante, A. A. et al. The dynamics of mutations associated with anti-malaria drug 

resistance in Plasmodium falciparum. Trends in Parasitology25, 557 -563 (2009). 

20. Schneider, K. A. & Kim, Y. An analytical model for genetic hitchhiking in the evolution of 

antimalarial drug resistance. Theoretical Population Biology 78, 93-108 (2010). 

21. Schneider, K. A. & Kim, Y. Approximations for the Hitchhiking Effect caused by the 

Evolution of Antimalarial-Drug Resistance. Journal of Mathematical Biology 62, 789-832 

(2011). 

22. Vinayak, S. et al. Origin and evolution of sulfadoxine resistant Plasmodium 

falciparum. PLoS Pathogens 6(3):e1000830 (2010). 

23. Nash, D. et al. Selection strength and hitchhiking around two anti-malarial resistance 

genes. Proceedings of the Royal Society B: Biological Sciences 272, 1153-1161 (2005). 

24. WHO. MalERA update. World Health Organization, 

Geneva.http://www.who.int/malaria/elimination/maleraupdate.pdf of subordinate document. 

Accessed 13 June 2015 

25. Gonçalves D, Hunziker P. Transmission-blocking strategies: the roadmap from laboratory 

bench to the community. Malaria Journal. 2016;15:95. doi:10.1186/s12936-016-1163-3. 

26. EMA. First malaria vaccine receives positive scientific opinion from EMA—London, The 

European Medicines 

http://www.who.int/malaria/elimination/maleraupdate.pdf


P a g e  | 32 

 

Agency.http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2015/07/WC50

0190447.pdf of subordinate document. Accessed 3 Feb 2016. 

27.  Wen EP, Ellis R, Pujar NS. Vaccine development and manufacturing. New York: Wiley; 

2015. 

28. Wu Y, Ellis RD, Shaffer D, et al. Phase 1 Trial of Malaria Transmission Blocking Vaccine 

Candidates Pfs25 and Pvs25 Formulated with Montanide ISA 51. Ratner AJ, ed. PLoS ONE. 

2008;3(7):e2636. doi:10.1371/journal.pone.0002636. 

29. Wu Y, Przysiecki C, Flanagan E, Bello-Irizarry SN, Ionescu R, Muratova O, et al. Sustained 

high-titer antibody responses induced by conjugating a malarial vaccine candidate to outer-

membrane protein complex. Proc Natl Acad Sci U S A.2006;103:18243–18248. doi: 

10.1073/pnas.0608545103. 

30. Cheru L, Wu Y, Diouf A, Moretz SE, Muratova OV, Song G, et al. The IC50 of anti-Pfs25 

antibody in membrane feeding assay varies among species. Vaccine. 2010;28:4423–4429. doi: 

10.1016/j.vaccine.2010.04.036. 

31. Kumar R, Angov E, Kumar N. Potent Malaria transmission-blocking antibody responses 

elicited by Plasmodium falciparumPfs25 expressed in Escherichia coli after successful protein 

refolding. Infect Immun. 2014;82:1453–1459. doi: 10.1128/IAI.01438-13. 

32. Theisen M, Roeffen W, Singh SK, Andersen G, Amoah L, van de Vegte-Bolmer M, et al. A 

multi-stage malaria vaccine candidate targeting both transmission and asexual parasite life-cycle 

stages.Vaccine. 2014;32:2623–2630. doi: 10.1016/j.vaccine.2014.03.020. 

http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2015/07/WC500190447.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2015/07/WC500190447.pdf


P a g e  | 33 

 

33. Kocken CH, Jansen J, Kaan AM, Beckers PJ, Ponnudurai T, Kaslow DC, et al. Cloning and 

expression of the gene coding for the transmission blocking target antigen Pfs48/45 

of Plasmodium falciparum. Mol Biochem Parasitol. 1993;61:59–68. doi: 10.1016/0166-

6851(93)90158-T. 

34. Kaslow DC, Bathurst IC, Lensen T, Ponnudurai T, Barr PJ, Keister DB. Saccharomyces 

cerevisiae recombinant Pfs25 adsorbed to alum elicits antibodies that block transmission 

of Plasmodium falciparum. Infect Immun. 1994;62:5576–5580. 

35. Zou L, Miles AP, Wang J, Stowers AW. Expression of malaria transmission-blocking 

vaccine antigen Pfs25 in Pichia pastoris for use in human clinical trials. Vaccine. 2003;21:1650–

1657. doi: 10.1016/S0264-410X(02)00701-6. 

36. Jones RM, Chichester JA, Mett V, Jaje J, Tottey S, Manceva S, et al. A plant-produced Pfs25 

VLP malaria vaccine candidate induces persistent transmission blocking antibodies against 

Plasmodium falciparum in immunized mice. PLoS ONE.2013;8:e79538. doi: 

10.1371/journal.pone.0079538. 

37. Gregory JA, Mayfield SP. Developing inexpensive malaria vaccines from plants and 

algae. Appl Microbiol Biotechnol.2014;98:1983–1990. doi: 10.1007/s00253-013-5477-6.  

38. Cherif MS, Shuaibu MN, Kodama Y, Kurosaki T, Helegbe GK, Kikuchi M, et al. 

Nanoparticle formulation enhanced protective immunity provoked by PYGPI8p-transamidase 

related protein (PyTAM) DNA vaccine in Plasmodium yoelii malaria 

model. Vaccine. 2014;32:1998–2006. doi: 10.1016/j.vaccine.2014.01.005. 



P a g e  | 34 

 

39. Ferraro B, Talbott KT, Balakrishnan A, Cisper N, Morrow MP, Hutnick NA, et al. Inducing 

humoral and cellular responses to multiple sporozoite and liver-stage malaria antigens using 

exogenous plasmid DNA. Infect Immun. 2013;81:3709–3720. doi: 10.1128/IAI.00180-13. 

40. Kongkasuriyachai D, Bartels-Andrews L, Stowers A, Collins WE, Sullivan J, Sattabongkot J, 

et al. Potent immunogenicity of DNA vaccines encoding Plasmodium vivax transmission-

blocking vaccine candidates Pvs25 and Pvs28—evaluation of homologous and heterologous 

antigen-delivery prime-boost strategy. Vaccine.2004;22:3205–3213. doi: 

10.1016/j.vaccine.2003.11.060. 

41. Doolan DL, Hoffman SL. DNA-based vaccines against malaria: status and promise of the 

multi-stage malaria DNA vaccine operation. Int J Parasitol. 2001;31:753–762. doi: 

10.1016/S0020-7519(01)00184-9. 

42. Nikolaeva D, Draper SJ, Biswas S. Toward the development of effective transmission 

blocking vaccines for malaria. Expert Rev Vaccines. 2015;14:653–680. doi: 

10.1586/14760584.2015.993383. 

43. Clinical trials—U.S. National Institutes of Health. Testing Pfs25-EPA/Alhydrogel as a 

potential malaria transmission blocking 

vaccine.https://clinicaltrials.gov/ct2/show/NCT01867463. Accessed 19 Sept 2015. 

44. Clinical trials—U.S. National Institutes of Health. Safety and immunogenicity of plant-

derived Pfs25 VLP-FhCMB malaria transmission blocking vaccine in healthy 

adultshttps://clinicaltrials.gov/ct2/show/NCT02013687. Accessed 19 Sept 2015. 

https://clinicaltrials.gov/ct2/show/NCT01867463
https://clinicaltrials.gov/ct2/show/NCT02013687


P a g e  | 35 

 

45. WHO. Global malaria vaccine pipeline. World Health Oganization, 

Geneva.http://www.who.int/vaccine_research/links/Rainbow/en/index.html. Accessed 1 Feb 

2016. 

46. Marsh K, Kinyanjui S. 2006. Immune effector mechanisms in malaria. Parasite Immunol 

28:51-60. 

47. Gupta S, Snow RW, Donnelly CA, Marsh K, Newbold C. 1999. Immunity to non-cerebral 

severe malaria is acquired after one or two infections. Nat Med 5:340-343. 

48. Goncalves BP, Huang CY, Morrison R, Holte S, Kabyemela E, Prevots DR, Fried M, Duffy 

PE. 2014. Parasite burden and severity of malaria in Tanzanian children. N Engl J Med 

370:1799-1808. 

49. Griffin JT, Hollingsworth TD, Reyburn H, Drakeley CJ, Riley EM, Ghani AC. 2015. Gradual 

acquisition of immunity to severe malaria with increasing exposure. Proc Biol Sci 

282:20142657. 

50. Niangaly M, Dara C, Kayentao K, Ongoiba A, Doumbo OK, Traore B, Crompton PD. 2013. 

An intensive longitudinal cohort study of Malian children and adults reveals no evidence of 

acquired immunity to Plasmodium falciparum infection. Clin Infect Dis 57:40-47. 

51. Carlson J, Helmby H, Hill AV, Brewster D, Greenwood BM, Wahlgren M. 1990. Human 

cerebral malaria: association with erythrocyte rosetting and lack of anti-rosetting antibodies. 

Lancet 336:1457-1460. 

52. Celada A, Cruchaud A, Perrin LH. 1982. Opsonic activity of human immune serum on in 

vitro phagocytosis of Plasmodium falciparum infected red blood cells by monocytes. Clin Exp 

Immunol 47:635-644. 

http://www.who.int/vaccine_research/links/Rainbow/en/index.html


P a g e  | 36 

 

53. Chan JA, Howell KB, Reiling L, Ataide R, Mackintosh CL, Fowkes FJ, Petter M, Chesson 

JM, Langer C, Warimwe GM, Duffy MF, Rogerson SJ, Bull PC, Cowman AF, Marsh K, Beeson 

JG. 2012. Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria 

immunity. J Clin Invest 122:3227-3238. 

54. Murungi LM, Sondén K, Llewellyn D, et al. Severe Plasmodium falciparum malaria: targets 

and mechanisms associated with protection in Kenyan children. Infect Immun. January 2016. 

doi:10.1128/IAI.01120-15. 

55. Boyle MJ, Reiling L, Feng G, et al. Human Antibodies Fix Complement to 

InhibitPlasmodium falciparum Invasion of Erythrocytes and Are Associated with Protection 

against Malaria. Immunity. 2015;42(3):580-590. doi:10.1016/j.immuni.2015.02.012. 

56. Vaughan AM, Kappe SH, Ploss A, Mikolajczak SA. Development of humanized mouse 

models to study human malaria parasite infection. Future microbiology. 

2012;7(5):10.2217/fmb.12.27. doi:10.2217/fmb.12.27. 

57. Prevention C-C for DC and. CDC - Malaria - Diagnosis & Treatment (United States) - 

Diagnosis (U.S.). http://www.cdc.gov/malaria/diagnosis_treatment/diagnosis.html. Accessed 

February 26, 2016. 

58. Johnston SP, Pieniazek NJ, Xayavong MV, Slemenda SB, Wilkins PP, da Silva AJ. PCR as a 

Confirmatory Technique for Laboratory Diagnosis of Malaria.Journal of Clinical Microbiology. 

2006;44(3):1087-1089. doi:10.1128/JCM.44.3.1087-1089.2006. 

59. WHO | Number of malaria deaths. WHO. 

http://www.who.int/gho/malaria/epidemic/deaths/en/. Accessed March 13, 2016. 



P a g e  | 37 

 

60. WHO | Number of malaria cases. WHO. http://www.who.int/gho/malaria/epidemic/cases/en/. 

Accessed March 13, 2016. 

61. Delves M, Plouffe D, Scheurer C, Meister S, Wittlin S, Winzeler EA, et al. (2012) The 

Activities of Current Antimalarial Drugs on the Life Cycle Stages of Plasmodium: A Comparative 

Study with Human and Rodent Parasites. PLoS Med 9(2): e1001169. 

doi:10.1371/journal.pmed.1001169 

62. RTS,S: Toward a first landmark on the Malaria Vaccine Technology Roadmap - ClinicalKey. 

https://www.clinicalkey.com/#!/content/playContent/1-s2.0-

S0264410X15013377?returnurl=http:%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS

0264410X15013377%3Fshowall%3Dtrue&referrer=http:%2F%2Fwww.ncbi.nlm.nih.gov%2Fpu

bmed%2F26431982. Accessed March 13, 2016. 

63. Kappe S., Vaughn A., Boddey J., and Cowman A.: That was then but this is now: malaria 

research in the time of an eradication agenda. Science 2010; 328: pp. 862-866 

64. Offeddu V., Thathy V., Marsh K., and Matuschewski K.: Naturally acquired immune 

responses against . Int J Parasitol 2012; 42: pp. 535-548 

65. Sardá V., Williamson K., and Kaslow D.: Approaches to malaria vaccine development using 

the retrospectroscope. Infect Immun 2009; 77: pp. 3130-3140 

66. Coppi A., Natarajan R., Pradel G., Bennett B., James E., Roggero M., et al: The malaria 

circumsporozoite protein has two functional domains, each with distinct roles as sporozoites 

journey from mosquito to mammalian host. J Exp Med 2011; 208: pp. 341-356 



P a g e  | 38 

 

67. Alexander, D. L., Mital, J., Ward, G. E., Bradley, P. & Boothroyd, J. C. Identification of the 

moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory 

organelles. PLoS. Pathog. 1, e17 (2005). 

68. Lebrun, M. et al. The rhoptry neck protein RON4 re-localizes at the moving junction during 

Toxoplasma gondii invasion. Cell Microbiol. 7, 1823–1833 (2005). 

69. Besteiro, S., Michelin, A., Poncet, J., Dubremetz, J. F. & Lebrun, M. Export of a Toxoplasma 

gondii rhoptry neck protein complex at the host cell membrane to form the moving junction 

during invasion. PLoS Pathog. 5, e1000309 (2009). 

70. Sheiner, L. et al. Toxoplasma gondii transmembrane microneme proteins and their modular 

design. Mol. Microbiol. 77, 912–929 (2010). 

71. Tyler, J. S. & Boothroyd, J. C. The C-terminus of Toxoplasma RON2 provides the crucial 

link between AMA1 and the host-associated invasion complex. PLoS 

Pathog. 7, e1001282(2011). 

72. Lamarque, M. et al. The RON2-AMA1 interaction is a critical step in moving junction-

dependent invasion by apicomplexan parasites. PLoS Pathog. 7, e1001276 (2011). 

73. Riglar, D. T. et al. Super-resolution dissection of coordinated events during malaria parasite 

invasion of the human erythrocyte. Cell Host Microbe 9, 9–20 (2011). 

74. Collins, C. R., Withers-Martinez, C., Hackett, F. & Blackman, M. J. An inhibitory antibody 

blocks interactions between components of the malarial invasion machinery. PLoS 

Pathog.5, e1000273 (2009). 



P a g e  | 39 

 

75. Richard, D. et al. Interaction between Plasmodium falciparum apical membrane antigen 1 

and the rhoptry neck protein complex defines a key step in the erythrocyte invasion process of 

malaria parasites. J. Biol. Chem. 285, 14815–14822 (2010). 

76. Srinivasan, P. et al. Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers 

commitment to invasion. Proc. Natl Acad. Sci. USA 108, 13275–13280 (2011). 

77. Bargieri DY, Andenmatten N, Lagal V, et al. Apical membrane antigen 1 mediates 

apicomplexan parasite attachment but is dispensable for host cell invasion. Nat Commun. 

2013;4:2552. doi:10.1038/ncomms3552. 

78. Deans, J. A. et al. Vaccination trials in rhesus monkeys with a minor, invariant, Plasmodium 

knowlesi 66 kD merozoite antigen. Parasite Immunol. 10, 535–552 (1988). 

79. Collins, W. E. et al. Protective immunity induced in squirrel monkeys with recombinant 

apical membrane antigen-1 of Plasmodium fragile. Am. J. Trop. Med. Hyg. 51, 711–719(1994). 

80. Anders, R. F. et al. Immunisation with recombinant AMA-1 protects mice against infection 

with Plasmodium chabaudi. Vaccine 16, 240–247 (1998). 

81. Silvie, O. et al. A role for apical membrane antigen 1 during invasion of hepatocytes by 

Plasmodium falciparum sporozoites. J. Biol. Chem. 279, 9490–9496 (2004). 

82. Proellocks, Nicholas I. et al. Dissecting the apicomplexan rhoptry neck protiens. Trends in 

Parasitology , Volume 26 , Issue 6 , 297 - 304. 

83. Mahanty, S., A. Saul, and L. H. Miller. 2003. Progress in the development of recombinant 

and synthetic blood-stage malaria vaccines. J. Exp. Biol.206:3781-3788. 



P a g e  | 40 

 

84. Holder, A. A., and E. M. Riley. 1996. Human immune response to MSP-1.Parasitol. 

Today 12:173-174. 

85. Blackman, M. J., H. G. Heidrich, S. Donachie, J. S. McBride, and A. A. Holder. 1990. A 

single fragment of a malaria merozoite surface protein remains on the parasite during red cell 

invasion and is the target of invasion-inhibiting antibodies. J. Exp. Med. 172:379-382. 

86. Daly, T. M., and C. A. Long. 1995. Humoral response to a carboxyl-terminal region of the 

merozoite surface protein-1 plays a predominant role in controlling blood-stage infection in 

rodent malaria. J. Immunol. 155:236-243. 

87. Egan, A. F., M. J. Blackman, and D. C. Kaslow. 2000. Vaccine efficacy of 

recombinant Plasmodium falciparum merozoite surface protein 1 in malaria-naive, -exposed, 

and/or -rechallenged Aotus vociferans monkeys. Infect. Immun. 68:1418-1427. 

88. Hirunpetcharat, C., J. H. Tian, D. C. Kaslow, N. van Rooijen, S. Kumar, J. A. Berzofsky, L. 

H. Miller, and M. F. Good. 1997. Complete protective immunity induced in mice by 

immunization with the 19-kilodalton carboxyl-terminal fragment of the merozoite surface 

protein-1 (MSP-1[19]) ofPlasmodium yoelii expressed in Saccharomyces cerevisiae: correlation 

of protection with antigen-specific antibody titer, but not with effector CD4+ T cells. J. 

Immunol. 159:3400-3411. 

 89. John, C. C., R. A. O'Donnell, P. O. Sumba, A. M. Moormann, T. F. de Koning-Ward, C. L. 

King, J. W. Kazura, and B. S. Crabb. 2004. Evidence that invasion-inhibitory antibodies specific 

for the 19-kDa fragment of merozoite surface protein-1 (MSP-119) can play a protective role 

against blood-stagePlasmodium falciparum infection in individuals in a malaria endemic area of 

Africa. J. Immunol. 173:666-672. 



P a g e  | 41 

 

 90. O'Donnell, R. A., T. F. de Koning-Ward, R. A. Burt, M. Bockarie, J. C. Reeder, A. F. 

Cowman, and B. S. Crabb. 2001. Antibodies against merozoite surface protein (MSP)-1(19) are a 

major component of the invasion-inhibitory response in individuals immune to malaria. J. Exp. 

Med. 193:1403-1412. 

91. Rotman, H. L., T. M. Daly, and C. A. Long. 1999. Plasmodium: immunization with 

carboxyl-terminal regions of MSP-1 protects against homologous but not heterologous blood-

stage parasite challenge. Exp. Parasitol. 91:78-85. 

92. Blackman, M. J., T. J. Scott-Finnigan, S. Shai, and A. A. Holder. 1994. Antibodies inhibit the 

protease-mediated processing of a malaria merozoite surface protein. J. Exp. Med. 180:389-393. 

93. RCSB PDB - 2FLG: Solution structure of an EGF-LIKE domain from the Plasmodium 

falciparum merozoite surface protein 1 Structure Summary Page. 

http://www.rcsb.org/pdb/explore.do?structureId=2FLG. Accessed March 13, 2016. 

 94. Carvalho LJ, Daniel-Ribeiro CT, Goto H: Malaria vaccine: candidate antigens, mechanism, 

constraints. Scand J Immunol. 2002, 56: 327-343. 10.1046/j.1365-3083.2002.01160.x. 

95. Cowman AF, Baldi DL, Healer J, Mills KE, O’Donnell RA, Reed MB: Functional analysis 

of proteins involved in Plasmodium falciparummerozoite invasion of red blood cells. FEBS Lett. 

2000, 476: 84-88. 10.1016/S0014-5793(00)01703-8. 

96. Epping RJ, Goldstone SD, Ingram LT, Upcroft JA, Ramasamy R, Cooper JA: An epitope 

recognised by inhibitory monoclonal antibodies that react with a 51 kilodalton merozoite surface 

antigen in Plasmodium falciparum. Mol Biochem Parasitol. 1988, 28: 1-10. 10.1016/0166-

6851(88)90173-9. 



P a g e  | 42 

 

97. Ramasamy R, Jones G, Lord R: Characterisation of an inhibitory monoclonal antibody-

defined epitope on a malaria vaccine candidate antigen. Immunol Lett. 1990, 23: 305-309. 

10.1016/0165-2478(90)90077-4. 

98. Taylor RR, Smith DB, Robinson VJ, McBride JS, Riley EM: Human antibody response 

to Plasmodium falciparum merozoite surface protein 2 is serogroup specific and predominantly 

of the immunoglobulin G3 subclass. Infect Immun. 1995, 63: 4382-4388. 

99. Metzger WG, Okenu DM, Cavanagh DR, Robinson JV, Bojang KA, Weiss HA, McBride JS, 

Greenwood BM, Conway DJ: Serum IgG3 to thePlasmodium falciparum merozoite surface 

protein 2 is strongly associated with a reduced prospective risk of malaria. Parasite Immunol. 

2003, 25: 307-312. 10.1046/j.1365-3024.2003.00636.x. 

100. Stubbs J, Olugbile S, Saidou B, Simpore J, Corradin G, Lanzavecchia A: Strain-

transcending Fc-dependent killing of Plasmodium falciparum by merozoite surface protein 2 

allele-specific human antibodies. Infect Immun. 2011, 79: 1143-1152. 10.1128/IAI.01034-10. 

101. Anders RF, Smythe JA: Polymorphic antigens in Plasmodium falciparum. Blood. 1989, 74: 

1865-1875. 

102. Felger I, Marshal VM, Reeder JC, Hunt JA, Mgone CS, Beck HP: Sequence diversity and 

molecular evolution of the merozoite surface antigen 2 of Plasmodium falciparum. J Mol Evol. 

1997, 45: 154-160. 10.1007/PL00006215. 

103. Taylor RR, Allen SJ, Greenwood BM, Riley EM: IgG3 antibodies to Plasmodium 

falciparum merozoite surface protein 2 (MSP2): increasing prevalence with age and association 

with clinical immunity to malaria. Am J Trop Med Hyg. 1998, 58: 406-413. 



P a g e  | 43 

 

104. Flueck C, Frank G, Smith T, Jafarshad A, Nebie I, Sirima SB, Olugbile S, Alonso P, Tanner 

M, Druilhe P, Felger I, Corradin G: Evaluation of two long synthetic merozoite surface protein 2 

peptides as malaria vaccine candidates. Vaccine. 2009, 27: 2653-2661. 

10.1016/j.vaccine.2009.02.081. 

105. Tebo AE, Kremsner PG, Luty AJ: Plasmodium falciparum: a major role for IgG3 in 

antibody-dependent monocyte-mediated cellular inhibition of parasite growth in vitro. Exp 

Parasitol. 2001, 98: 20-28. 10.1006/expr.2001.4619. 

106. Bouharoun-Tayoun H, Oeuvray C, Lunel F, Druilhe P: Mechanisms underlying the 

monocyte-mediated antibody-dependent killing ofPlasmodium falciparum asexual blood stages. 

J Exp Med. 1995, 182: 409-418. 10.1084/jem.182.2.409. 

107. McCarthy JS, Marjason J, Elliott S, Fahey P, Bang G, Malkin E, Tierney E, Aked-Hurditch 

H, Adda C, Cross N, Richards JS, Fowkes FJ, Boyle MJ, Long C, Druilhe P, Beeson JG, Anders 

RF: A phase 1 trial of MSP2-C1, a blood-stage malaria vaccine containing 2 isoforms of MSP2 

formulated with montanide ISA 720. PLoS One. 2011, 6: e2443 

108. RCSB PDB - 4QY8: Crystal Structure of anti-MSP2 Fv fragment (mAb6D8) in complex 

with 3D7-MSP2 14-30 Structure Summary Page. 

http://www.rcsb.org/pdb/explore/explore.do?structureId=4QY8. Accessed March 13, 2016. 

109. RCSB PDB - 4QXT: Crystal Structure of anti-MSP2 Fv fragment (mAb6D8)in complex 

with FC27-MSP2 14-30 Structure Summary Page. 

http://www.rcsb.org/pdb/explore/explore.do?structureId=4QXT. Accessed March 13, 2016. 



P a g e  | 44 

 

 110. Humanized Mouse Model | Knockin Engineering | genOway. 

http://www.genoway.com/services/customized-mouse/knockin-models/humanisation.htm. 

Accessed March 13, 2016. 

111. Golden SA, Covington HE, Berton O, Russo SJ. A standardized protocol for repeated social 

defeat stress in mice. Nat Protocols. 2011;6(8):1183-1191. doi:10.1038/nprot.2011.361. 

112. Axel G. Griesbeck, Jörg Neudörfl, Achim Hörauf, Sabine Specht, and Angela Raabe. 

Antimalarial Peroxide Dyads from Natural Artemisinin and Hydroxyalkylated 1,2,4-Trioxanes. 

Journal of Medicinal Chemistry 2009 52 (10), 3420-3423. DOI: 10.1021/jm9002523 

113. Jiménez-Díaz MB et al. Quantitative measurement of Plasmodium-infected erythrocytes in 

murine models of malaria by flow cytometry using bidimensional assessment of SYTO-16 

fluorescence. Cytometry A. 2009 Mar; 75(3):225-35. 

114. Arnold L, Tyagi RK, Meija P, Swetman C, Gleeson J, Pérignon JL, Druilhe P. Further 

improvements of the P. falciparum humanized mouse model. PLoS One. 2011 Mar 31; 

6(3):e18045. 

115. The Mouse as a Model System. http://ko.cwru.edu/info/mousemodel.html. Accessed March 

20, 2016. 

116. Chandramohanadas R, Basappa, Russell B, et al. Small Molecule Targeting Malaria 

Merozoite Surface Protein-1 (MSP-1) Prevents Host Invasion of Divergent Plasmodial 

Species. The Journal of Infectious Diseases. 2014;210(10):1616-1626. doi:10.1093/infdis/jiu296. 



P a g e  | 45 

 

117. Sim BK, Chitnis CE, Wasniowska K, Hadley TJ, Miller LH. Receptor and ligand domains 

for invasion of erythrocytes by Plasmodium falciparum. Science. 1994 Jun 24; 264(5167):1941-

4. 

118. Goel VK, Li X, Chen H, Liu SC, Chishti AH, Oh SS. Band 3 is a host receptor binding 

merozoite surface protein 1 during the Plasmodium falciparum invasion of erythrocytes. Proc 

Natl Acad Sci U S A. 2003 Apr 29; 100(9):5164-9. 

119. Child MA, Epp C, Bujard H, Blackman MJ. Regulated maturation of malaria merozoite 

surface protein-1 is essential for parasite growth. Mol Microbiol. 2010 Oct; 78(1):187-202. 

120. Metenou S, Suguitan A, Long C, Leke R, Taylor D. Fetal Immune Responses to 

Plasmodium falciparum Antigens in a Malaria-Endemic Region of Cameroon. J Immuno. 2007 

178:2770-2777. 

121. Patricia Palmeira, Camila Quinello, Ana Lúcia Silveira-Lessa, Cláudia Augusta Zago, and 

Magda Carneiro-Sampaio, “IgG Placental Transfer in Healthy and Pathological 

Pregnancies,” Clinical and Developmental Immunology, 2012. doi:10.1155/2012/985646 

 

 


	Southeastern University
	FireScholars
	Spring 2016

	Investigating the Effects of Increasing Anti-AMA1, Anti-MSP1, and Anti-MSP2 In Preventing Malaria Incidence
	April Skipper
	Recommended Citation


	tmp.1461093005.pdf.O23IB

